LIMITES Y CONTINUIDAD- 2º bch

0.3.-Dibujar la gráfica de las siguientes funciones:

a) f:[0,
$$\infty$$
) \to R / f(x)=3x-2

a)
$$f:[0,\infty) \to R / f(x) = 3x-2$$
 b) $f(x) = x^2 + 2x - 3$ c) $f:[0,4] \to R / f(x) = 4x - x^2$

d)
$$f(x) = \frac{4-x}{x+1}$$
 e) $f(x) = x^2 - 6x + 9$ f) $f(x) = x^2 - 4x + 5$

f)
$$f(x) = x^2 - 4x + 5$$

0.4.- Dada la función:

$$f(x) = \begin{cases} x^2 - 4 & \text{si} \quad x < 4 \\ 2x - 4 & \text{si} \quad x > 4 \end{cases}$$

- b) Hallar f(-1), f(0), f(2), f(3.5), f(4), $f(\sqrt{20})$
- c) ¿Qué números tienen por imagen 5.61
- d) ¿Qué números tienen imagen negativa?

$$\textbf{0.5.- Dada la función} \quad f(x) = \left\{ \begin{array}{cccc} x + 4 & \text{si} & x \leq -1 \\ 3 & \text{si} & -1 < x < 2 \\ (x - 1)(5 - x) & \text{si} & x \geq 2 \end{array} \right.$$

- a)Dibuja su gráfica
- b) Hallar f(-2), f(2), f(6)
- c) ¿Qué números tienen por imagen 1.75?¿Y por imagen 3?

0.6.-Dada la función
$$f(x) = \begin{cases} -x^2 - 2x & \text{si} & x \le 0 \\ \frac{x}{x - 4} & \text{si} & 0 < x < 2 \\ \frac{1}{4}x^2 + 2x - 4 & \text{si} & x \ge 2 \end{cases}$$

- a)Dibuja su gráfica
- b) Hallar f(-3), f(0), f(2), f(6)
- c)¿Qué números tienen imagen igual a 0
- d)¿Qué números tienen imagen mayor que 3/4?

1.1.-Calcular

1.-
$$\lim_{x\to 4} (\sqrt{3x+4} - 2^{x-1})$$

2.-
$$\lim_{x\to 1} \frac{\sqrt{x-1}}{x^2+8}$$

3.-
$$\lim_{x\to 2} \frac{7x+1}{3x-8}$$

4.-
$$\lim_{x\to 3} \frac{2x-6}{x^2+4}$$

5.-
$$\lim_{x\to 1} \frac{x^2 - 4x + 3}{x^2 - x}$$

6.-
$$\lim_{x\to -3} \frac{x^2 + 4x + 3}{5x + 15}$$

7.-
$$\lim_{x\to 5} \frac{x^2-x-1}{x^2-4x-5}$$

1.- Lim
$$(\sqrt{3x+4}-2^{x-1})$$
 2.- Lim $\frac{\sqrt{x}-1}{x^2+8}$ 3.- Lim $\frac{7x+1}{3x-8}$ 4.- Lim $\frac{2x-6}{x^2+4}$ 5.- Lim $\frac{x^2-4x+3}{x^2-x}$ 6.- Lim $\frac{x^2+4x+3}{5x+15}$ 7.- Lim $\frac{x^2-x-1}{x^2-4x-5}$ 8.- Limf(x) siendo $f(x) = \begin{cases} 2^x & \text{si } x < 1 \\ \frac{4x+3}{2x} & \text{si } x > 1 \end{cases}$ 9.- Lim $(5x^2-8x+6)$

9.-
$$\lim_{x \to +\infty} (5x^2 - 8x + 6)$$

10.- Lim
$$(-4x^4 - x^2 + 18)$$

12.-
$$\lim_{x \to +\infty} \frac{x^3 - 4x + 2}{5x^3 - 6}$$

10.-
$$\lim_{x \to -\infty} (-4x^4 - x^2 + 18)$$
 11.- $\lim_{x \to +\infty} (0.4)^{x^4}$ 12.- $\lim_{x \to +\infty} \frac{x^3 - 4x + 2}{5x^3 - 6}$ 13.- $\lim_{x \to -\infty} \frac{5x^4 - x^2 + 22}{-3x^2 - 6x}$ 14.- $\lim_{x \to -\infty} \frac{-2x^3 - x + 1}{7x^2 - x - 11}$

14.- Lim
$$\frac{-2x^3 - x + 1}{7x^2 - x - 11}$$

2.1.-Estudiar la continuidad de las siguientes funciones:

2.1.-Estudiar la continuidad de las siguientes funciones:

2.1.1.-
$$f(x) = \begin{cases} 1-x & \text{si} & x < 0 \\ 3 & \text{si} & x = 0 \\ 2^x & \text{si} & 0 < x < 1 \\ 2 & \text{si} & x \ge 2 \end{cases}$$

2.1.2.- $f(x) = \begin{cases} \frac{x^2+4}{x+2} & \text{si} & x < 0 \\ \frac{2+x}{1+x^2} & \text{si} & x > 0 \end{cases}$

2.1.3.- $f(x) = \begin{cases} -x^2-2x & \text{si} & x \le 0 \\ \frac{1}{x} & \text{si} & 0 < x < 1 \\ x^2-2x+2 & \text{si} & x > 1 \end{cases}$

2.2.-Dada la función $f(x) = \begin{cases} x^2+2x & \text{si} & x < 0 \\ x & \text{si} & 0 \le x < 2 \end{cases}$ representarla y estudiar su continuidad sabiendo que es continua en el punto $x=2$

2.2.-Dada la función
$$f(x) = \begin{cases} x^2 + 2x & \text{si } x < 0 \\ x & \text{si } 0 \le x < 2 \end{cases}$$
 representarla y estudiar su continuidad sabiendo que esta $2x + kx^2$ si $x \ge 2$

continua en el punto x=2