Couto Eiercicio 4

Resolución de Problemas del Bloque de Geometría Geometría Analítica en el Espacio (II) Ejercicio 49

IES O Couto

curso 2019-2020

Ejercicio 49

Ejercicio 49

Dada la recta r: $\begin{cases} x+y-3=0\\ y+2z+5=0 \end{cases}$, y el plano $\pi:x+y-z-6=0$.

- a) Determinar el punto P intersección de r y π , y el punto R de π más próximo al punto Q=(6,-3,-1) de r.
- b) Calcular el área del triángulo de vértices P, Q, y R.

- Para calcular P, hay que resolver el sistema $\begin{cases} x+y=3\\ y+2z=-5\\ x+y-z=6 \end{cases}$
 - La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.

- - La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.

$$\bullet \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 1 & 1 & -1 & 6 \end{pmatrix} \xrightarrow{F_3 - F_1 \to F_3} \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 0 & 0 & -1 & 3 \end{pmatrix}$$

IES O Couto

oblemas Apartado a)
I Bloque

- La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.
- $\bullet \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 1 & 1 & -1 & 6 \end{pmatrix} \xrightarrow{F_3 F_1 \to F_3} \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 0 & 0 & -1 & 3 \end{pmatrix}$
- Por tanto $r \cap \Pi = P = (2, 1, -3)$

- - La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.
 - $\bullet \quad \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 1 & 1 & -1 & 6 \end{pmatrix} \xrightarrow{F_3 F_1 \to F_3} \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 0 & 0 & -1 & 3 \end{pmatrix}$
 - Por tanto $r \cap \Pi = P = (2, 1, -3)$
- **2** El punto $R \in \Pi$ se obtendrá como $R = s \cap \Pi$, siendo s la recta perpendicular a Π pasando por Q.

IES O Couto

Ejercicio 49

- - La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.
 - $\bullet \quad \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 1 & 1 & -1 & 6 \end{pmatrix} \xrightarrow{F_3 F_1 \to F_3} \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 0 & 0 & -1 & 3 \end{pmatrix}$
 - Por tanto $r \cap \Pi = P = (2, 1, -3)$
- **2** El punto $R \in \Pi$ se obtendrá como $R = s \cap \Pi$, siendo s la recta perpendicular a Π pasando por Q.
 - El vector director de s es el vector normal a Π , $\overrightarrow{u_s} = (1, 1, -1)$. Por tanto:

- - La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.
 - $\bullet \ \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 1 & 1 & -1 & 6 \end{pmatrix} \xrightarrow{F_3 F_1 \to F_3} \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 0 & 0 & -1 & 3 \end{pmatrix}$
 - Por tanto $r \cap \Pi = P = (2, 1, -3)$
- **2** El punto $R \in \Pi$ se obtendrá como $R = s \cap \Pi$, siendo s la recta perpendicular a Π pasando por Q.
 - El vector director de s es el vector normal a Π , $\overrightarrow{u_s} = (1, 1, -1)$. Por tanto:

$$s: \begin{cases} x = 6 + \lambda \\ y = -3 + \lambda \\ z = -1 - \lambda \end{cases}$$

- - La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.
 - $\bullet \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 1 & 1 & -1 & 6 \end{pmatrix} \xrightarrow{F_3 F_1 \to F_3} \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -5 \\ 0 & 0 & -1 & 3 \end{pmatrix}$
 - Por tanto $r \cap \Pi = P = (2, 1, -3)$
- **2** El punto $R \in \Pi$ se obtendrá como $R = s \cap \Pi$, siendo s la recta perpendicular a Π pasando por Q.
 - El vector director de s es el vector normal a Π , $\overrightarrow{u_s} = (1, 1, -1)$. Por tanto:

$$s: \begin{cases} x = 6 + \lambda \\ y = -3 + \lambda \\ z = -1 - \lambda \end{cases}$$

• $R \in s \implies R = (6 + \lambda, -3 + \lambda, -1 - \lambda)$

- - La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.
 - $\bullet \begin{pmatrix}
 1 & 1 & 0 & 3 \\
 0 & 1 & 2 & -5 \\
 1 & 1 & -1 & 6
 \end{pmatrix} \xrightarrow{F_3 F_1 \to F_3} \begin{pmatrix}
 1 & 1 & 0 & 3 \\
 0 & 1 & 2 & -5 \\
 0 & 0 & -1 & 3
 \end{pmatrix}$
 - Por tanto $r \cap \Pi = P = (2, 1, -3)$
- **2** El punto $R \in \Pi$ se obtendrá como $R = s \cap \Pi$, siendo s la recta perpendicular a Π pasando por Q.
 - El vector director de s es el vector normal a Π , $\overrightarrow{u_s} = (1,1,-1)$. Por tanto:

$$s: \begin{cases} x = 6 + \lambda \\ y = -3 + \lambda \\ z = -1 - \lambda \end{cases}$$

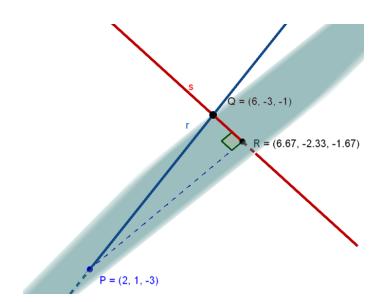
• $R \in s \implies R = (6 + \lambda, -3 + \lambda, -1 - \lambda)$ $R \in \Pi \implies 6 + \lambda - 3 + \lambda - (-1 - \lambda) = 6 \implies \lambda = \frac{2}{3}$ IES O Couto

Ejercicio 49

- - La matriz del sistema es $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix}$, con $|A| \neq 0$. Por tanto, el sistema es compatible determinado. Es decir, Π y r son secantes, siendo la solución del sistema las coordenadas del punto de corte.
 - $\bullet \begin{pmatrix}
 1 & 1 & 0 & 3 \\
 0 & 1 & 2 & -5 \\
 1 & 1 & -1 & 6
 \end{pmatrix} \xrightarrow{F_3 F_1 \to F_3} \begin{pmatrix}
 1 & 1 & 0 & 3 \\
 0 & 1 & 2 & -5 \\
 0 & 0 & -1 & 3
 \end{pmatrix}$
 - Por tanto $r \cap \Pi = P = (2, 1, -3)$
- **2** El punto $R \in \Pi$ se obtendrá como $R = s \cap \Pi$, siendo s la recta perpendicular a Π pasando por Q.
 - El vector director de s es el vector normal a Π , $\overrightarrow{u_s} = (1, 1, -1)$. Por tanto:

$$s: \begin{cases} x = 6 + \lambda \\ y = -3 + \lambda \\ z = -1 - \lambda \end{cases}$$

• $R \in \mathfrak{s} \implies R = (6 + \lambda, -3 + \lambda, -1 - \lambda)$ $R \in \Pi \implies 6 + \lambda - 3 + \lambda - (-1 - \lambda) = 6 \implies \lambda = \frac{2}{3}$ Por tanto, $R = \left(\frac{20}{3}, -\frac{7}{3}, -\frac{5}{3}\right)$ Couto



 En general, el área del triángulo determinado por tres puntos no alineados P, Q, y R viene dada por

$$\mathsf{\acute{A}rea}\left(\Delta \mathit{PQR}\right) = \frac{1}{2} |\overrightarrow{\mathit{RP}} \times \overrightarrow{\mathit{RQ}}|$$

 En general, el área del triángulo determinado por tres puntos no alineados P, Q, y R viene dada por

• En este caso, como por construcción $\overrightarrow{RP} \perp \overrightarrow{RQ}$, podemos directamente obtener:

$$\operatorname{Área}\left(\Delta PQR\right) = \frac{1}{2}|\overrightarrow{RP}||\overrightarrow{RQ}|$$

 En general, el área del triángulo determinado por tres puntos no alineados P, Q, y R viene dada por

• En este caso, como por construcción $\overrightarrow{RP} \perp \overrightarrow{RQ}$, podemos directamente obtener:

$$Area (\Delta PQR) = \frac{1}{2} |\overrightarrow{RP}| |\overrightarrow{RQ}|$$

Donde:

$$|\overrightarrow{RP}| = \sqrt{\left(2 - \frac{20}{3}\right)^2 + \left(1 + \frac{7}{3}\right)^2 + \left(-3 + \frac{5}{3}\right)^2} = \frac{2\sqrt{78}}{3}u$$

$$|\overrightarrow{RQ}| = \sqrt{\left(6 - \frac{20}{3}\right)^2 + \left(-3 + \frac{7}{3}\right)^2 + \left(-1 + \frac{5}{3}\right)^2} = \frac{2\sqrt{3}}{3}u$$

 En general, el área del triángulo determinado por tres puntos no alineados P, Q, y R viene dada por

$$\mathsf{Área}\left(\Delta PQR\right) = \frac{1}{2} |\overrightarrow{RP} \times \overrightarrow{RQ}|$$

• En este caso, como por construcción $\overrightarrow{RP} \perp \overrightarrow{RQ}$, podemos directamente obtener:

$$Area (\Delta PQR) = \frac{1}{2} |\overrightarrow{RP}| |\overrightarrow{RQ}|$$

Donde:

$$|\overrightarrow{RP}| = \sqrt{\left(2 - \frac{20}{3}\right)^2 + \left(1 + \frac{7}{3}\right)^2 + \left(-3 + \frac{5}{3}\right)^2} = \frac{2\sqrt{78}}{3} u$$

$$|\overrightarrow{RQ}| = \sqrt{\left(6 - \frac{20}{3}\right)^2 + \left(-3 + \frac{7}{3}\right)^2 + \left(-1 + \frac{5}{3}\right)^2} = \frac{2\sqrt{3}}{3} u$$

• Por tanto Área (ΔPQR) = $\frac{2\sqrt{26}}{3}u^2$