Continuidad Matemáticas II. Bloque de Análisis

IES O Couto

curso 2019-2020

Continuidad en un punto x = a

Definición

Una función f es **continua en un punto** x = a si satisface las siguientes condiciones:

- I) Existe f(a)
- II) Existe, y es un número real, el límite $\lim_{x\to a} f(x)$ (para lo cual deben existir, ser números reales, y coincidir ambos límites laterales). Es decir:

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \in \mathbb{R}$$

III) $\lim_{x\to a} f(x) = f(a)$

Si f no cumple alguna de las condiciones anteriores, se dice que f es discontinua en x = a.

Aunque la función no sea continua en x = a, en determinadas condiciones puede hablarse de **continuidad lateral**:

Definición

- Si existe $f(a) \in \mathbb{R}$, y $f(a) = \lim_{x \to a^+} f(x)$, pero $f(a) \neq \lim_{x \to a^-} f(x)$ o
 - $\not\supseteq \lim_{x \to a^-} f(x)$, se dice que f es continua en x = a por la derecha (o que existe continuidad lateral por la derecha), y discontinua por la izquierda.
- Si existe $f(a) \in \mathbb{R}$, y $f(a) = \lim_{x \to a^{-}} f(x)$, pero $f(a) \neq \lim_{x \to a^{+}} f(x)$ o
 - $\not\exists \lim_{x \to a^+} f(x)$, se dice que f es continua en x = a por la izquierda (o que existe continuidad lateral por la izquierda), y discontinua por la derecha.

Es decir, para que una función f sea continua en x = a, debe ser continua en x = a por la derecha y por la izquierda.

Clasificación de discontinuidades

- Discontinuidad Evitable.
- Discontinuidad Esencial de Primera Especie:
 - Discontinuidad de Salto de longitud finita (o de Salto Finito).
 - Discontinuidad de salto de longitud infinita (o de Salto Infinito).
- Discontinuidad Esencial de Segunda Especie.

Discontinuidad Evitable.

Definición

Se dice que f presenta una **discontinuidad evitable** en x = a cuando se cumplen las dos siguientes condiciones:

I) Los límites laterales en x = a existen, son reales, y coinciden:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \in \mathbb{R}$$

II) O no existe f(a) ($a \not\in Dom f$), o aunque existe f(a), se tiene que $f(a) \neq \lim_{x \to a} f(x)$

Esta discontinuidad podría evitarse redefiniendo la función en x=a mediante el valor $f(a)=\lim_{x\to a}f(x)$. A dicho valor se le llama valor verdadero de la función en x=a

Discontinuidades no Evitables

Discontinuidad Esencial de Primera Especie

Discontinuidad de salto finito

Se dice que f presenta una discontinuidad de salto finito en x=a cuando existen y son números reales los límites laterales en x=a, pero no coinciden. Es decir, cuando se cumple que:

$$\lim_{x\to a^-} f(x) = L_1 \in \mathbb{R} \neq \lim_{x\to a^-} f(x) = L_2 \in \mathbb{R}$$

A la cantidad $|L_1 - L_2|$ se la denomina salto.

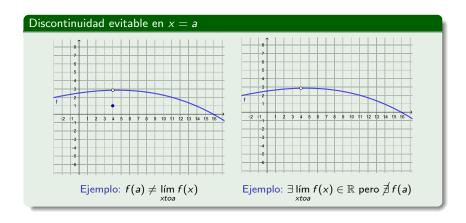
Discontinuidad de salto infinito

Se dice que f presenta una discontinuidad de salto infinito en x=a cuando existen los límites laterales, pero alguno de ellos no es un número real (es $+\infty$ o $-\infty$).

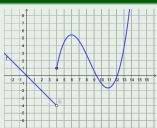
Discontinuidad Esencial de Segunda Especie

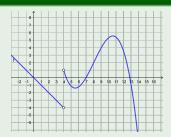
Se dice que f presenta una discontinuidad esencial de segunda especie cuando no existe alguno de los límites laterales en x=a.

Ejemplos de funciones discontinuas en x=a

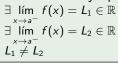


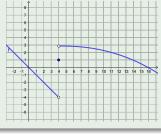
Discontinuidad de Salto Finito en x = a

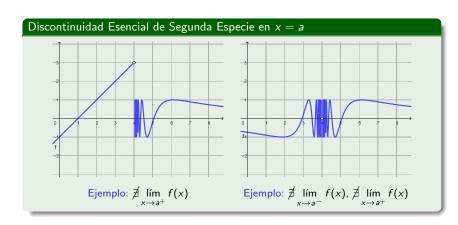




En todos estos ejemplos:







Función continua en un intervalo de la recta real

Definición

Dado un intervalo de la recta real I, la función $f:I\subset\mathbb{R}\longrightarrow\mathbb{R}$ es continua en I si es continua en todos los puntos del intervalo.

Propiedades

- En un punto que sea extremo de un intervalo cerrado, la continuidad en dicho punto se refiere a la continuidad lateral.
- Todas las funciones elementales son continuas en su dominio.
- Las operaciones suma, resta, producto, división, y composición de funciones continuas es una función continua en su dominio de definición.

Teorema de Bolzano

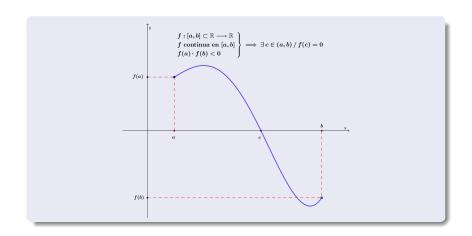
Teorema

Sea $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$ una función continua en [a,b]. Si el signo de f(a) es distinto del signo de f(b), entonces existe al menos un punto $c\in(a,b)$ tal que f(c)=0

Interpretación geométrica

Si f(a) y f(b) tienen distinto signo, los puntos (a, f(a)) y (b, f(b)) estarán situados uno por encima del eje OX, y el otro por debajo. Como la función es continua, debe poder trazarse la gráfica de un solo trazo, por tanto dicha gráfica, en algún punto situado entre (a, f(a)) y (b, f(b)) deberá cortar al eje OX.

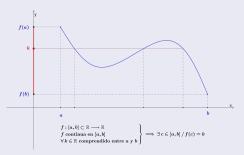
Interpretación geométrica del Teorema de Bolzano



Teorema de Darboux o de los valores intermedios

Teorema

Sea $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$ una continua en [a,b], y $k\in\mathbb{R}$ un número comprendido entre los valores f(a) y f(b). Entonces, existe algún $c\in[a,b]$ tal que f(c)=k.



Es decir, toda función f continua en [a,b] toma todos los valores comprendidos entre f(a) y f(b)

Teorema de Weierstrass

Teorema

Para cualquier función $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$ continua en [a,b], existen x_m , $x_M\in[a,b]$ tales que $f(x_m)\leq f(x)\leq f(x_M)\quad\forall\,x\in[a,b]$. Es decir, toda función $f:[a,b]\subset\mathbb{R}\longrightarrow\mathbb{R}$ continua en [a,b] alcanza sus valores máximo y mínimo absoluto en el intervalo [a,b]

