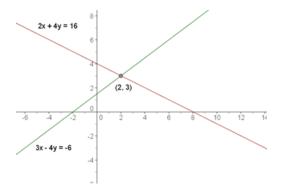
Sistemas de ecuaciones y posiciones de sus rectas en el plano

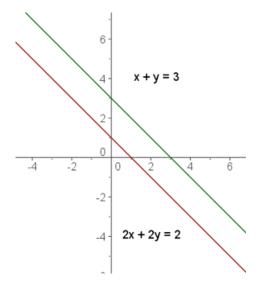
Según el sistema tenga o no solución se denomina compatible o incompatible, respectivamente.



Sistema Incompatible

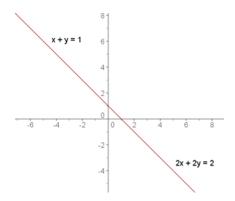
- No tiene solución
- Rectas paralelas

POSICIONES DE DOS RECTAS EN EL PLANO.


1. Rectas secantes

Dos rectas son secantes si sólo tienen un punto en común.

El sistema de ecuaciones formado por las dos rectas tiene una solución.


2. Rectas paralelas

Dos rectas son paralelas si no tienen ningún punto en común.

El sistema de ecuaciones formado por las dos rectas **no** tiene **solución**.

3. Rectas coincidentes

Dos rectas son coincidentes si tienen todos los puntos son comunes.

El sistema de ecuaciones formado por las dos rectas tiene infinitas soluciones.

CRITERIO DE POSICIÓN DE DOS RECTAS EN EL PLANO

Para poder determinar la posición de dos rectas sin representarlas puedes ayudarte del siguiente cuadro, concretamente de la última columna:

Faugaián avalísita	Ecuación gonoral
Ecuacion explicita	Ecuacion deneral
Education Capitolia	Eddadion general
Ecdacion explicita	Ecdacion general

	r ≡ y = mx +n	r ≡ Ax +By +C =0
	s ≡ y = m'x +n'	$r \equiv Ax + By + C = 0$
r y s secantes	m ≠ m'	$\frac{A}{A'} \neq \frac{B}{B'}$
r y s paralelas	m = m'n ≠ n'	$\frac{A}{A'} = \frac{B}{B'} \neq \frac{C}{C'}$
r y s coincidentes	m = m'n = n'	$\frac{A}{A'} = \frac{B}{B'} = \frac{C}{C'}$

EJEMPLO

Estudia las posiciones relativas de los siguientes pares de rectas:

$$\begin{cases} r = x - 2y + 3 = 0 \\ s = -2x + 4y - 6 = 0 \end{cases} \qquad \frac{1}{-2} = \frac{-2}{4} = \frac{3}{-6} \qquad \text{Coincidentes}$$

$$\begin{cases} r = 2x + 3y - 1 = 0 \\ s = 4x + 6y - 5 = 0 \end{cases} \qquad \frac{2}{4} = \frac{3}{6} \neq \frac{-1}{-5} \qquad \text{Paralelas}$$

EJERCICIOS PROPUESTOS

1. Resuelve los siguientes sistemas:

1 a)
$$\begin{cases} 2x + y = 5 \\ x - y = -5 \end{cases}$$
 1b) $\begin{cases} x + 3y = 6 \\ 2x + y = 0 \end{cases}$

- a) Analíticamente
- b) Gráficamente
- c) Interpretación geométrica del sistema.
- **2.** Representa gráficamente el sistema $\begin{cases} x + 3y = 4 \\ 2x + 6y = 0 \end{cases}$
 - a) ¿Qué observas? ¿Cómo se les llama a este tipo de rectas?
 - b) ¿Qué nombre recibe el sistema?
- 3. A la vista de la representación gráfica del sistema $\begin{cases} x-y=4\\ -2x+2y=-8 \end{cases}$

¿Qué puedes afirmar acerca de las rectas que lo componen?