# Fórmulas de área y volumen de cuerpos geométricos

| Figura   | Esquema   | Área                                                                      | Volumen                                   |
|----------|-----------|---------------------------------------------------------------------------|-------------------------------------------|
| Cilindro | h         | $A_{total} = 2\pi r (h + r)$                                              | $V = \pi r^2 \cdot h$                     |
| Esfera   | T E       | $A_{total} = 4\pi r^2$                                                    | $V=\frac{4}{3}\pi r^3$                    |
| Cono     | h         | $A_{total} = \pi r^2 + \pi r g$                                           | $V = \frac{\pi r^2 h}{3}$                 |
| Cubo     |           | A = 6 a <sup>2</sup>                                                      | V = a <sup>3</sup>                        |
| Prisma   | base      | A = (perim. base ∙€h) + 2 • area base                                     | V = área base   €h                        |
| Pirámide | base hase | $A = \frac{\text{perim.base} \times \text{ap.lat}}{2} + \text{area base}$ | $V = \frac{\text{area base} \times h}{3}$ |

# Poliedros regulares (sólidos platónicos)

| Figura     | Esquema | Nº de caras                      | Área                             |
|------------|---------|----------------------------------|----------------------------------|
| Tetraedro  |         | 4 caras, triángulos equiláteros  | $A = a^2 \cdot \sqrt{3}$         |
| Octaedro   |         | 8 caras, triángulos equiláteros  | $A = 2 \cdot a^2 \cdot \sqrt{3}$ |
| Cubo       |         | 6 caras, cuadrados               | $A = 6 a^2$                      |
| Dodecaedro | apotema | 12 caras, pentágonos regulares   | A = 30 · a · ap.                 |
| lcosaedro  |         | 20 caras, triángulos equiláteros | $A = 5 \cdot a^2 \cdot \sqrt{3}$ |

Fórmula de Euler: C + V - A = 2 donde,

C= n° de caras, V= n° de vértices, A= n° de aristas

# **EJERCICIOS DE VOLÚMENES**

# Ejercicio nº 1.-

Expresa en cm<sup>3</sup>:

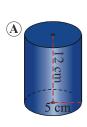
- a) 1 m<sup>3</sup>
- b) 5 400 mm<sup>3</sup>
- c) 0,003 dam<sup>3</sup>

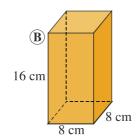
Solución:

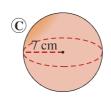
- a)  $1 \text{ m}^3 = 1 \cdot 1000000 \text{ cm}^3 = 1000000 \text{ cm}^3$
- b)  $5400 \text{ mm}^3 = 5400 : 1000 \text{ cm}^3 = 5.4 \text{ cm}^3$
- c)  $0,003 \text{ dam}^3 = 0,003 \cdot 1000000000 \text{ cm}^3 = 3000000 \text{ cm}^3$

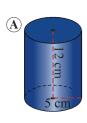
# Ejercicio nº 2.-

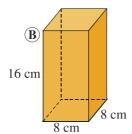
Calcula el volumen de estos cuerpos:

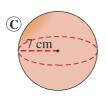












$$V = \pi r^2 h =$$
  
= 3,14 \cdot 25 \cdot 12 =  
= 942 cm<sup>3</sup>

$$V = A_{\text{BASE}} \cdot h =$$
  
=  $8^2 \cdot 16 =$   
= 1024 cm<sup>3</sup>

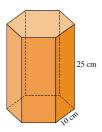
$$V = \frac{4}{3}\pi r^3 =$$

$$= \frac{4}{3} \cdot 3,14 \cdot 7^3 \approx$$

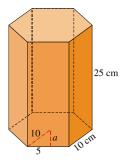
$$\approx 1436 \text{ cm}^3$$

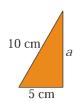
# Ejercicio nº 3.-

# Halla el volumen de este prisma de base hexagonal regular:



## Solución:





$$a = \sqrt{10^2 - 5^2} = 8,66 \text{ cm}$$

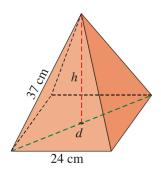
$$V = A_{\text{BASE}} \cdot h$$

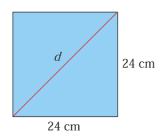
$$A_{\text{BASE}} = \frac{P \cdot a}{2} = \frac{60 \cdot 8,66}{2} = 259,8 \text{ cm}$$

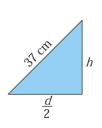
$$V = 259,8 \cdot 25 = 6495 \text{ cm}^3$$

# Ejercicio nº 4.-

Calcula el volumen de una pirámide regular cuya base es un cuadrado de 24 cm de lado y su arista lateral es de 37 cm.







$$a = \sqrt{24^2 + 24^2} = 33,9 \,\mathrm{cm}$$

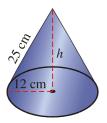
$$\frac{a}{2}$$
 = 16,95 cm  
 $h = \sqrt{37^2 - 16,95^2} = 32,9 \text{ cm}$ 

$$V = \frac{A_{\text{BASE}} \cdot h}{3} = \frac{24^2 \cdot 32,9}{3} = 6316,8 \text{ cm}^3$$

## Ejercicio nº 5.-

Calcula el volumen de un cono cuya generatriz mide 25 cm y el radio de su base es de 12 cm.

## Solución:

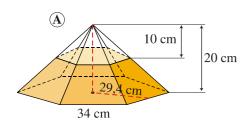


$$h = \sqrt{25^2 - 12^2} = 21.9 \text{ cm}$$

$$V = \frac{A_{\text{BASE}} \cdot h}{3} = \frac{3,14 \cdot 12^2 \cdot 21,9}{3} = 3300,8 \text{ cm}^3$$

## Ejercicio nº 6.-

## Calcula el volumen del tronco de pirámide y del tronco de cono:



# B 3 cm



$$A_{\rm BM} = \frac{6 \cdot 34 \cdot 29, 4}{2} = 2998, 8 \text{ cm}^2$$

$$V_{PG} = \frac{A_{BASE} \cdot h}{3} = \frac{2998, 8 \cdot 20}{3} = 19992 \text{ cm}^3$$

$$V_{PP} = \left(\frac{1}{2}\right)^3 \cdot V_{PG} = \frac{1}{8} \cdot 19992 = 2499 \text{ cm}^3$$

$$V_{TRONCO} = 19992 - 2499 = 17493 \text{ cm}^3$$

$$\frac{x+15}{6} = \frac{x}{3} \rightarrow 3x+45 = 6x \rightarrow x = 15 \text{ cm}$$

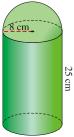
$$V_{\text{CG}} = \frac{A_{\text{BASE}} \cdot h}{3} = \frac{3,14 \cdot 6^2 \cdot 30}{3} = 1130,4 \text{ cm}^3$$

$$V_{\text{CP}} = \frac{3,14 \cdot 3^2 \cdot 15}{3} = 141,3 \text{ cm}^3$$

$$V_{\text{TRONCO}} = 1130,4 - 141,3 = 989,1 \text{ cm}^3$$

## Ejercicio nº 7.-

Teniendo en cuenta las medidas señaladas, calcula el volumen de esta figura:



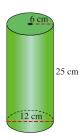
## Solución:

$$V_{\rm C} = A_{\rm B} \cdot h = 3,14 \cdot 8^2 \cdot 25 = 5024 \,{\rm cm}^3$$
  
 $V_{\rm SE} = \frac{1}{2} \left( \frac{4}{3} \pi r^2 \right) = \frac{4 \cdot 3,14 \cdot 8^2}{6} = 133,97 \,{\rm cm}^3$ 

$$V_{\text{FIGURA}} = 5024 + 133,97 = 5157,97 \,\text{cm}^3$$

## Ejercicio nº 8.-

Un florero con forma cilíndrica tiene un diámetro interior de 12 cm y su altura es de 25 cm. Queremos llenarlo hasta los 2/3 de su capacidad. ¿Cuántos litros de agua necesitamos? Solución:



$$V_{\rm C} = A_{\rm B} \cdot h = 3,14 \cdot 6^2 \cdot 25 = 2\,826\,{\rm cm}^3$$
  
2 826 cm<sup>3</sup> = 2,826 litros  
 $\frac{2}{3} \cdot 2,826 = 1,884$ 

Necesitamos 1,884 litros de agua.

## Ejercicio nº 9.-

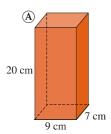
# Expresa en m<sup>3</sup>:

- a) 15 500 dm<sup>3</sup>
- b) 23 dam<sup>3</sup>
- c) 0,003 hm<sup>3</sup>

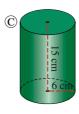
- a)  $15\,500 \text{ dm}^3 = 15\,500 : 1\,000 \text{ m}^3 = 15,5 \text{ m}^3$
- b)  $23 \text{ dam}^3 = 23 \cdot 1000 \text{ m}^3 = 23000 \text{ m}^3$
- c)  $0.003 \text{ hm}^3 = 0.003 \cdot 1000000 \text{ m}^3 = 3000 \text{ m}^3$

# Ejercicio nº 10.-

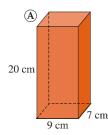
# Calcula el volumen de estos cuerpos:



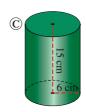




# Solución:







$$V = A_{\text{BASE}} \cdot h =$$
  
= 9 · 7 · 20 =  
= 1 260 cm<sup>3</sup>

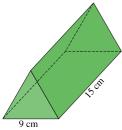
$$V = \frac{A_{\text{BASE}} \cdot h}{3} = V = A_{\text{BASE}} \cdot h = 3,14 \cdot 6^2 \cdot 15 = 1695,6 \text{ cm}^3$$

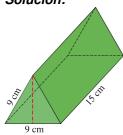
$$= 444.8 \text{ cm}^3$$

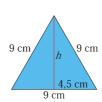
$$V = A_{BASE} \cdot h =$$
= 3,14 \cdot 6<sup>2</sup> \cdot 15 =  
= 1 695,6 cm<sup>3</sup>

# Ejercicio nº 11.-

Halla el volumen de este prisma cuyas bases son triángulos equiláteros:







$$h_1 = \sqrt{9^2 - 4.5^2} = 7.8 \,\mathrm{cm}$$

$$V = A_{\text{BASE}} \cdot h$$

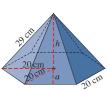
$$A_{\text{BASE}} = \frac{b \cdot h}{2} = \frac{9 \cdot 7.8}{2} = 35.1 \text{ cm}^2$$

$$V = 35.1 \cdot 15 = 526.5 \text{ cm}^3$$

## Ejercicio nº 12.-

Calcula el volumen de una pirámide regular cuya base es un hexágono de 20 cm de lado y su arista lateral es de 29 cm.

Solución:







$$h = \sqrt{29^2 - 20^2} = 21 \text{ cm}$$

$$a = \sqrt{20^2 - 10^2} = 17,3 \text{ cm}$$

$$V = \frac{A_{\text{BASE}} \cdot h}{3}$$

$$A_{\text{BASE}} = \frac{P \cdot a}{2} = \frac{120 \cdot 17,3}{2} = 1038 \text{ cm}^2$$

$$V = \frac{1038 \cdot 21}{3} = 7266 \text{ cm}^3$$

## Ejercicio nº 13.-

Calcula el volumen de un cono cuya generatriz mide 20 cm y el radio de su base es de 10 cm. *Solución:* 

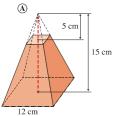


$$h = \sqrt{20^2 - 10^2} = 17.3 \text{ cm}$$

$$V = \frac{A_{\text{BASE}} \cdot h}{3} = \frac{3,14 \cdot 10^2 \cdot 17,3}{3} = 1810,7 \text{ cm}^3$$

# Ejercicio nº 14.-

Calcula el volumen de estos cuerpos:





Solución:

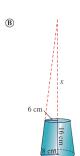
 $\bigcirc$ 

$$V_{PG} = \frac{A_{BASE} \cdot h}{3} = 720 \text{ cm}^3$$

$$\left(\frac{5}{15}\right)^3 = \left(\frac{1}{3}\right)^3 = \frac{1}{27}$$

$$V_{PP} = \frac{1}{27} \cdot V_{PG} = 26.7 \text{ cm}^3$$

$$V_{\text{TBONCO}} = V_{\text{PG}} - V_{\text{PP}} = 693.3 \text{ cm}^3$$



$$\frac{x+16}{8} = \frac{x}{6} \rightarrow 6x + 96 = 8x \rightarrow x = 48 \text{ cm}$$

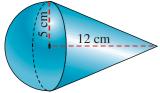
$$V_{CG} = \frac{A_{BASE} \cdot h}{3} = 4287,1 \text{ cm}^{3}$$

$$V_{CP} = \frac{A_{BASE} \cdot h}{3} = 1808,6 \text{ cm}^{3}$$

$$V_{TRONCO} = V_{CG} - V_{CP} = 4287,1 - 1808,6 = 2478,5 \text{ cm}^{3}$$

# Ejercicio nº 15.-

Teniendo en cuenta las medidas señaladas, calcula el volumen de esta figura:



## Solución:

$$V_{\text{SE}} = \frac{1}{2} \left( \frac{4}{3} \pi r^2 \right) = \frac{4}{6} \left( 3,14 \cdot 25 \right) = 52,3 \text{ cm}^3$$

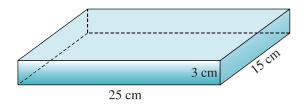
$$V_{\text{C}} = \frac{A_{\text{B}} \cdot h}{3} = 314 \text{ cm}^3$$

$$V_{\text{FIGURA}} = 52,3 + 314 = 366,3 \text{ cm}^3$$

## Ejercicio nº 16.-

Una piscina tiene forma de prisma rectangular de dimensiones 25m x 15m x 3m. ¿Cuántos litros de agua son necesarios para llenar los 4/5 de su volumen?

## Solución:



$$V_{P} = 25 \cdot 15 \cdot 3 = 1125 \,\text{m}^{3} \text{ volumen total}$$
 
$$1125 \,\text{m}^{3} = 1125 \cdot 1000 \,\text{dm}^{3} = 1125 \,000 \,\text{litros}$$
 
$$\frac{4}{5} \cdot 1125 \,000 = 900 \,000 \,\text{litros}$$

Son necesarios 900 000 litros.

## Ejercicio nº 17.-

Expresa en mm<sup>3</sup>:

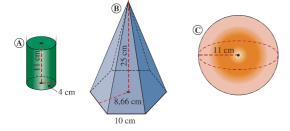
- a) 23 cm<sup>3</sup>
- b) 7 dm<sup>3</sup>
- c) 0,045 m<sup>3</sup>

Solución:

- a)  $23 \text{ cm}^3 = 23 \cdot 1000 \text{ mm}^3 = 23000 \text{ mm}^3$
- b)  $7 \text{ dm}^3 = 7 \cdot 1000000 \text{ mm}^3 = 7000000 \text{ mm}^3$
- c)  $0.045 \text{ m}^3 = 0.045 \cdot 1000000000 \text{ mm}^3 = 45000000 \text{ mm}^3$

# Ejercicio nº 18.-

Calcula el volumen de estos cuerpos:



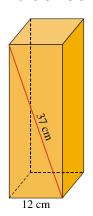
Solución:

$$A_{\text{BASE}} = \frac{60 \cdot 8,66}{2} = 259,8 \text{ cm}$$

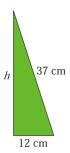
$$V = A_{\text{BASE}} \cdot h = V = \frac{A_{\text{BASE}} \cdot h}{3} = V = \frac{4}{3}\pi r^3 = 259,8 \cdot 25 = 259,8 \cdot 25 = 2165 \text{ cm}^3 = 506,6 \text{ cm}^2$$

## Ejercicio nº 19.-

Halla el volumen de este prisma de base cuadrada:



#### Solución:



$$h = \sqrt{37^2 - 12^2} = 35 \text{ cm}$$

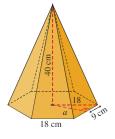
$$V = A_{\text{BASE}} \cdot h$$

$$V = 12^2 \cdot 35 = 5040 \text{ cm}^3$$

# Ejercicio nº 20.-

Calcula el volumen de una pirámide regular cuya base es un hexágono de 18 cm de lado y su altura es de 40 cm.

## Solución:





$$a = \sqrt{18^2 - 9^2} = 15,6 \text{ cm}$$

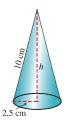
$$V = \frac{A_{\text{BASE}} \cdot h}{3}$$

$$A_{\text{BASE}} = \frac{P \cdot a}{2} = 842, 4 \text{ cm}^2$$

$$V = \frac{842, 4 \cdot 40}{3} = 11232 \text{ cm}^3$$

## Ejercicio nº 21.-

Calcula el volumen de un cono cuya generatriz mide 10 cm y el radio de su base es de 2,5 cm. *Solución:* 

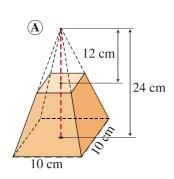


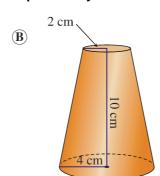
$$h = \sqrt{10^2 - 2.5^2} = 9.7 \text{ cm}$$

$$V = \frac{A_{\text{BASE}} \cdot h}{3} = \frac{3,14 \cdot 2,5^2 \cdot 9,7}{3} = 63,4 \text{ cm}^3$$

# Ejercicio nº 22.-

# Calcula el volumen del tronco de pirámide y del tronco de cono:







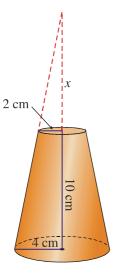
$$V_{PG} = \frac{A_{BASE} \cdot h}{3} = 800 \text{ cm}^3$$

$$\left(\frac{12}{24}\right)^3 = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

$$V_{PP} = \frac{1}{8} \cdot V_{PG} = 100 \text{ cm}^3$$

$$V_{\text{TRONCO}} = V_{\text{PG}} - V_{\text{PP}} = 700 \text{ cm}^3$$





$$\frac{10+x}{4} = \frac{x}{2} \rightarrow 20 + 2x = 4x \rightarrow x = 10 \text{ cm}$$

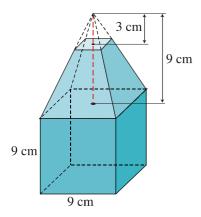
$$V_{CG} = \frac{A_{BASE} \cdot h}{3} = 334,9 \text{ cm}^3$$

$$V_{CP} = \frac{A_{BASE} \cdot h}{3} = 41,9 \text{ cm}^3$$

$$V_{\text{TRONCO}} = V_{\text{CG}} - V_{\text{CP}} = 293 \, \text{cm}^3$$

## Ejercicio nº 23.-

Teniendo en cuenta las medidas señaladas, calcula el volumen de esta figura:



## Solución:

$$V_{PG} = \frac{A_{B} \cdot h}{3} = \frac{9^{2} \cdot 9}{3} = 243 \text{ cm}^{3}$$

$$\left(\frac{3}{9}\right)^{3} = \left(\frac{1}{3}\right)^{3} = \frac{1}{27}$$

$$V_{PP} = \frac{1}{27} \cdot 243 = 9 \text{ cm}^{3}$$

$$V_{CUBO} = a^{3} = 9^{3} = 729 \text{ cm}^{3}$$

$$V_{FIGURA} = 729 + 234 = 963 \text{ cm}^{3}$$

## Ejercicio nº 24.-

El suelo de un depósito cilindrico tiene una superficie de 45 m². El agua que contiene alcanza 2,5 metros. Para vaciarlo se utiliza una bomba que extrae 8 hl por minuto. ¿Cuánto tiempo tardará en vaciarse?

$$V_{\text{AGUA}} = A_{\text{B}} \cdot h = 45 \cdot 2,5 = 112,5 \text{ m}^3 = 112500 \text{ litros}$$
  
112500: 800 = 140,625 minutos ≈ 2h 20 min 37 s