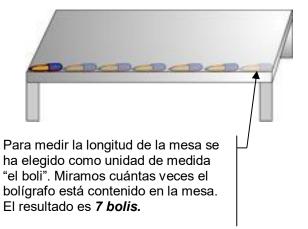


MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL

IES La Magdalena. Avilés. Asturias


Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la temperatura, la intensidad de corriente, la fuerza... etc.

Medir una magnitud consiste en compararla con otra de la misma especie (elegida arbitrariamente) llamada **unidad** y ver cuantas veces está contenida dicha unidad en la magnitud medida.

Ejemplo.

Si tratamos de medir la longitud de una mesa (magnitud), deberemos primero elegir una unidad de medida y ver después cuántas veces esa unidad está contenida en la magnitud a medir.

El resultado de la medida debe ser, por tanto, el resultado numérico y la unidad empleada en la medición.

Aunque existe un número muy grande de magnitudes y se puede elegir para su medida una cantidad enorme de unidades, la medida de cualquier magnitud se reduce a la medida de un número muy pequeño de magnitudes llamadas magnitudes fundamentales.

El **Sistema Internacional de Unidades (S.I.),** creado en 1960, es el sistema mundialmente aceptado. Está basado en el Sistema Métrico y consta de siete magnitudes fundamentales y sus correspondientes unidades de medida (todas basadas en fenómenos físicos fundamentales, excepto la unidad de masa: el kilogramo)

Sistema Internacional de Unidades (S.I)			
Magnitud fundamental	Símbolo	Unidad	Símbolo
Longitud	L	Metro	m
Masa	М	Kilogramo	kg
Tiempo	Т	Segundo	s
Intensidad de corriente	I	Amperio	Α
Temperatura	θ	Kelvin	K
Cantidad de sustancia	N	Mol	mol
Intensidad luminosa	J	Candela	cd

Obtener la ecuación de dimensiones de una magnitud derivada es expresar ésta como producto de las magnitudes fundamentales.

Para obtener la ecuación dimensional de una magnitud derivada:

- Deberemos partir de su ecuación de definición.
- Hay que manipular la ecuación de definición hasta lograr que se pueda expresar en función de las magnitudes fundamentales.

Ejemplo 1.

Obtener la ecuación dimensional de la velocidad.

La velocidad es una magnitud derivada.

Su ecuación de definición es: _{V =}

Su ecuación de dimensión, será:

$$\left[v\right] = \frac{\left[L\right]}{\left[T\right]} = \left[L \ T^{-1}\right]$$

Ejemplo 3.

Obtener la ecuación dimensional de la fuerza

La fuerza es una magnitud derivada.

Su ecuación de definición es: $F = m \cdot a$

Su ecuación de dimensión, será:

$$\left[F\right] = \left[M\right] \left\lceil L \ T^{-2} \right\rceil = \left\lceil M \ L \ T^{-2} \right\rceil$$

Ejemplo 2.

Obtener la ecuación dimensional de la aceleración.

La aceleración es una magnitud derivada.

Su ecuación de definición es: $a = \frac{v}{4}$

Su ecuación de dimensión, será:

$$\left[a\right] = \frac{\left[L \ T^{-1}\right]}{\left[T\right]} = \left[L \ T^{-2}\right]$$

Ejemplo 4.

Obtener la ecuación dimensional de la energía

La energía es una magnitud derivada.

Su ecuación de definición es: $E_c = \frac{1}{2} \text{ m v}^2$

Su ecuación de dimensión, será:

$$\begin{bmatrix} \mathsf{E}_{\mathsf{c}} \end{bmatrix} = \begin{bmatrix} \mathsf{M} \end{bmatrix} \begin{bmatrix} \mathsf{L} \ \mathsf{T}^{-1} \end{bmatrix}^2 = \begin{bmatrix} \mathsf{M} \ \mathsf{L}^2 \ \mathsf{T}^{-2} \end{bmatrix}$$

 $\frac{1}{2}$ es un número sin dimensiones.

Utilidad del análisis dimensional

La ecuación de dimensiones puede servir para determinar la unidad de medida de la magnitud considerada.

Por ejemplo, a partir de la ecuación de dimensiones de la fuerza (ejemplo 3) se deduce que la unidad de fuerza en el S.I. es el kg . m . s^{-2} o newton (N). Es decir N = kg . m . s^{-2}

También puede servirnos para comprobar si una ecuación es correcta o no, ya que cualquier ecuación debe ser dimensionalmente homogénea o, lo que es lo mismo, *ambos miembros han* de tener la misma ecuación de dimensiones.

Ejemplo. ¿Cuál de las ecuaciones siguientes es correcta?

$$s = at; s = \frac{1}{2}vt^2; s = \frac{1}{2}at^2$$

Para todas ellas el primer miembro tiene como ecuación dimensional: [s] = [L]

Veamos cual es la ecuación dimensional del segundo miembro:

$$[a t] = [L T^{-2} T] = [L T^{-1}]$$

$$\left[\frac{1}{2}V t^2\right] = \left[L T^{-1} T^2\right] = \left[L T\right]$$

$$\left[\frac{1}{2}a t^2\right] = \left[L T^{-2} T^2\right] = \left[L\right]$$

Por tanto la ecuación correcta es la última pues es la única $\left\lceil \frac{1}{2} v \ t^2 \right\rceil = \left[L \ T^{-1} \ T^2 \right] = \left[L \ T \right]$ que cumple la condición de homogeneidad (ambos miembros tienen la misma ecuación de dimensiones)