MATEMÁTICAS II

BOLETÍN 1: GEOMETRÍA EN EL ESPACIO. VECTORES.

- 1.- Dados los vectores $\vec{a} = (2, -1, 4)$ y $\vec{b} = (0, 3, \gamma)$ con $\gamma \in R$.
- a) Halla el valor de γ para que \vec{a} y \vec{b} sean ortogonales.
- b) Para $\gamma = 0$ calcula el área del paralelogramo que tiene por lados los vectores $\vec{a} \ y \ \vec{b}$.
- 2.- a) Definición e interpretación geométrica del producto vectorial de dos vectores en el espacio.
- b) Calcula los vectores unitarios y perpendiculares a los vectores $\vec{u} = (1, -2, 2)$ y $\vec{v} = (1, 0, 1)$.
- 3.- a) Calcula el ángulo que forman los vectores $\vec{u}=(2,1,1)$ y $\vec{v}=(-1,1,1)$.
- b) ¿Cuánto debe valer a para que los vectores $\vec{u}=(2,a,1)$ y $\vec{v}=(-1,a,1)$ sean perpendiculares?
- 4.- Los puntos A(1,1,0), B(0,1,1) y C(-1,0,1) son vértices consecutivos de un paralelogramo ABCD. Calcula las coordenadas del vértice D y el área del paralelogramo.
- 5.- a) Demuestra que los puntos $A(\delta,2,\delta), B(2,-\delta,0)y$ $C(\delta,0,\delta+2)$ son vértices de un triángulo isósceles.
- b) Para $\delta=2$ determinar su área.
- c) Para $\delta=0$, si los puntos A,B y C se trasladan según el vector $\vec{v}=(1,-1,3)$ se obtiene un prisma triangular. Halla los nuevos vértices y el volumen del prisma.
- 6.- Determina el valor de a para que los puntos A(1,0,1), B(1,1,1) y C(1,6,a) sean los vértices de un triángulo de área 3/2.
- 7.- Sean \vec{u} \vec{y} \vec{v} dos vectores tales que $|\vec{u}|=3$, $|\vec{v}|=4$, $|\vec{u}-\vec{v}|=5$. Calcula el ángulo que forman los vectores \vec{u} \vec{y} \vec{v} . Calcula el producto mixto $[\vec{u}, \vec{v}, \vec{u} \vec{x} \vec{v}]$, siendo $\vec{u} \vec{x} \vec{v}$ el producto vectorial de \vec{u} \vec{y} \vec{v} .
- 8.- Dados los puntos $P_1(1,3,-1)$, $P_2(a,2,0)$, $P_3(1,5,4)$ y $P_4(2,0,2)$, se pide:
- a) Hallar el valor de a para que los cuatro puntos estean en el mismo plano.
- b) Hallas los valores de a para que el tetraedro con vértices en P_1 , P_2 , P_3 y P_4 tenga volumen igual a 7.
- 9.- Sean \vec{u} y \vec{v} dos vectores. Comprueba que si $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = 0$ entonces $|\vec{u}| = |\vec{v}|$.

Calcula los vectores unitarios que sean perpendiculares a los vectores $\vec{u} = (-3,4,1)$ y $\vec{v} = (-2,1,0)$.

- 10.- a) Definición e interpretación geométrica del producto vectorial de dos vectores.
- b) Dados los vectores $\vec{u}=(-2,0,4)$ y $\vec{v}=(-1,0,\alpha)$, ¿Para qué los valores de α el módulo del vector $(\vec{u}+\vec{v})x(\vec{u}-\vec{v})$ es igual a 4?
- c) Determina los valores de a y b, a>0, para que los vectores $\overrightarrow{v_1} = (a,b,b)$ y $\overrightarrow{v_2} = (b,a,b)$ y $\overrightarrow{v_3} = (b,b,a)$, sean unitarios y ortogonales dos a dos.
- 11.- Determinar el vector ó vectores unitarios $\vec{v}=(a,b,c)$ con a,b,c>0, que forman un ángulo de $\frac{\pi}{6}$ radianes con el vector $\vec{u}=(1,1,1)$ y un ángulo de $\frac{\pi}{4}$ radianes con $\vec{w}=(2,0,2)$.