

App Inventor
Create Your Own Android Apps

App Inventor
Create Your Own Android Apps

David Wolber, Hal Abelson,
Ellen Spertus & Liz Looney

Beijing  ·  Cambridge  ·  Farnham  ·  Köln  ·  Sebastopol  ·  Tokyo

App Inventor
by David Wolber, Hal Abelson, Ellen Spertus & Liz Looney

Copyright © 2011 David Wolber, Hal Abelson, Ellen Spertus & Liz Looney. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Courtney Nash and Brian Jepson
Production Editor: Holly Bauer
Copyeditor: Rachel Monaghan
Proofreader: Holly Bauer

Indexer: Denise Getz
Cover Designer: Mark Paglietti
Interior Designer: Ron Bilodeau
Illustrator: Robert Romano

Printing History:

April 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. App Inventor and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the informa-
tion contained herein.

978-1-4493-9748-7
[TI]

For Tomás, who reinvents me every day.

Contents

Foreword.. xiii

Preface. xv

1. Hello Purr. 1
What You’ll Learn 1
The App Inventor Environment 2
Designing the Components 3
Adding Behaviors to the Components 8
Packaging the App for Downloading 14
Sharing the App 15
Variations 15
Summary 16

Part I. 12 Customizable Apps

2. PaintPot. 19
What You’ll Learn 20
Getting Started 20
Designing the Components 20
Adding Behaviors to the Components 24
The Complete App: PaintPot 35
Variations 35
Summary 36

3. MoleMash.. 37
What You’ll Build 37
What You’ll Learn 38
Getting Started 38
Adding Behaviors to the Components 41

viii  Contents

The Complete App: MoleMash 49
Variations 49
Summary 50

4. No Texting While Driving. 51
What You’ll Learn 52
Getting Started 53
The Complete App: No Texting While Driving 66
Variations 66
Summary 68

5. Ladybug Chase.. 69
What You’ll Build 69
What You’ll Learn 69
Designing the Components 70
Getting Started 71
Animating the Ladybug 71
Displaying the Energy Level 74
Adding an Aphid 78
Adding a Restart Button 82
Adding the Frog 83
Adding Sound Effects 86
Variations 86
Summary 87

6. Paris Map Tour. 89
What You’ll Learn 89
Designing the Components 90
Setting the Properties of ActivityStarter 90
Adding Behaviors to the Components 91
Setting Up a Virtual Tour 94
Variations 98
Summary 98

7. Android, Where’s My Car?.. 99
What You’ll Learn 99
Getting Started 100
Designing the Components 100

Contents  ix 

Adding Behaviors to the Components 102
The Complete App: Android, Where’s My Car? 111
Variations 111
Summary 111

8. Presidents Quiz.. 113
What You’ll Learn 113
Getting Started 114
Designing the Components 114
Adding Behaviors to the Components 116
Making the Quiz Easy to Modify 122
Switching the Image for Each Question 124
Checking the User’s Answers 126
The Complete App: The Presidents Quiz 129
Variations 130
Summary 130

9. Xylophone.. 131
What You’ll Build 131
What You’ll Learn 132
Getting Started 132
Designing the Components 132
Creating the Keyboard 133
Recording and Playing Back Notes 138
Variations 145
Summary 145

10. MakeQuiz and TakeQuiz. 147
What You’ll Learn 148
Getting Started 148
Designing the Components 149
Adding Behaviors to the Components 150
The Complete App: MakeQuiz 163
TakeQuiz: An App for Taking the Quiz in the Database 164
TakeQuiz: Modifying the Blocks to Load the Quiz from the Database 164
The Complete App: TakeQuiz 166
Variations 166
Summary 168

x  Contents

11. Broadcast Hub. 169
What You’ll Learn 170
Getting Started 170
Designing the Components 171
Adding Behaviors to the Components 172
The Complete App: Broadcast Hub 184
Variations 186
Summary 186

12. NXT Remote Control.. 187
What You’ll Learn 188
Getting Started 188
Designing the Components 189
Adding Behaviors to the Components 192
Variations 201
Summary 201

13. Amazon at the Bookstore.. 203
What You’ll Learn 203
What Is an API? 204
Designing the Components 207
Designing the Behavior 208
Customizing the API 215
Variations 216
Summary 216

Part II. Inventor’s Manual

14. Understanding an App’s Architecture.. 219
Components 220
Behavior 221
Summary 227

15. Engineering and Debugging an App.. 229
Software Engineering Principles 229
Debugging an App 236
Summary 240

Contents  xi 

16. Programming Your App’s Memory.. 241
Named Memory Slots 241
Properties 242
Defining Variables 243
Setting and Getting a Variable 244
Setting a Variable to an Expression 245
Summary 248

17. Creating Animated Apps.. 249
Adding a Canvas Component to Your App 249
The Canvas Coordinate System 250
Animating Objects with Timer Events 251
High-Level Animation Functions 253
Interactive Animation 256
Specifying Sprite Animation Without a Clock Timer 257
Summary 258

18. Programming Your App to Make Decisions: Conditional Blocks.. 259
Testing Conditions with if and ifelse Blocks 260
Programming an Either/Or Decision 261
Programming Conditions Within Conditions 262
Programming Complex Conditions 263
Summary 266

19. Programming Lists of Data.. 267
Creating a List Variable 268
Selecting an Item in a List 269
Using an Index to Traverse a List 269
Creating Input Forms and Dynamic Lists 273
Lists of Lists 277
Summary 280

20. Repeating Blocks: Iteration. 281
Controlling an App’s Execution: Branching and Looping 281
Repeating Functions on a List Using foreach 282
A Second foreach Example: Displaying a List 284
Repeating Blocks with while 286
Summary 289

xii  Contents

21. Defining Procedures: Reusing Blocks. 291
Eliminating Redundancy 293
Defining a Procedure 294
Calling a Procedure 295
The Program Counter 296
Adding Parameters to Your Procedure 296
Returning Values from a Procedure 299
Reusing Blocks Among Apps 301
A Second Example: distanceBetweenPoints 301
Summary 303

22. Working with Databases.. 305
Storing Persistent Data in TinyDB 306
Retrieving Data from TinyDB 307
Storing and Sharing Data with TinyWebDB 308
Storing Data with TinyWebDB 309
Requesting and Processing Data with TinyWebDB 310
GetValue-GotValue in Action 311
Setting Up a Web Database 315
Summary 317

23. Reading and Responding to Sensors.. 319
Creating Location-Aware Apps 319
Using the Orientation Sensor 324
Using the Accelerometer 328
Summary 332

24. Communicating with Web APIs.. 333
Talking to Web APIs That Generate Images 335
Talking to Web Data APIs 341
Creating Your Own App Inventor–Compliant APIs 345
Summary 348

Index.. 349

Foreword

Our consumer culture gives us all sorts of opportunities for entertainment, pleasure
and sometimes even learning. However, by and large, these are passive activities.
That’s OK—we all like to kick back sometimes and be entertained—but it shouldn’t
be the whole picture. In addition to the appeal of consuming, there’s the satisfaction
of producing—that is, of creating. It’s the joy and pride that results when we draw a
picture, build a model airplane, or bake some bread.

The high-tech objects (like cell phones, tablet computers, TVs, etc.) that we use today
to consume entertainment and information are black boxes to most of us. Their work-
ings are incomprehensible and, while there are capabilities in some of them that en-
able the user to draw pictures, make videos, etc., they are not, in and of themselves,
creative media. In other words, most people can’t create the apps that run on these
gadgets.

What if we could change that? What if we could take creative control of our everyday
gadgets, like cell phones? What if building an app for your cell phone was as easy as
drawing a picture or baking a loaf of bread? What if we could close the gap between
the objects of our consumer culture and the media of our creative lives?

For one, it could demystify those objects. Rather than being black boxes, impenetrable
to our sight, they become objects that can be tinkered with. They become objects
capable of our understanding. We gain a less passive and more creative relationship
to them, and we get to play with these devices in a much deeper, more significant way
when we can actually build things for them.

When Hal Abelson first spoke to me about the idea that became App Inventor, we
talked about the unique motivating force that cell phones could have in education.
He wondered if we could use that motivating force to help introduce students to con-
cepts in computer science. As we built it and tried it in classes like Dave Wolber’s, we
started to realize that something even more powerful was happening: App Inventor
was starting to turn students from consumers to creators. Students thought it was fun

xiv  Foreword

and exhilarating to build apps for their phones! When one of Dave’s students built the
simple but powerful “No Texting While Driving” app, we really started to imagine what
would happen if anybody, not just professional software engineers, could build an app.

So we worked hard to make App Inventor easier and more fun to use. We’ve worked to
make it more powerful (but still simple) as well. And we’re continuing this work—App
Inventor is still a beta product and we have exciting plans for it.

The authors of this book are truly world-class educators and software engineers. I’d
like to personally thank them for their work in building, testing, and documenting the
App Inventor for Android product and, of course, for writing this wonderful book.

Now go, unleash your creativity and build an app!

—Mark Friedman
Tech Lead and Manager of the App Inventor for Android project, Google

0

Preface

You’re on your regular running route, just jogging along, and an idea for the next killer
mobile app hits you. All the way home, you don’t even care what your time is, all you
can think about is getting your idea out there. But how exactly do you do that? You’re
no programmer, and that would take years, and time is money, and…well, someone
has probably done it already anyway. Just like that, your idea is dead in the water.

Now imagine a different world, where creating apps doesn’t require years of program-
ming experience, where artists, scientists, humanitarians, health-care workers, attor-
neys, firefighters, marathon runners, football coaches, and people from all walks of
life can create apps. Imagine a world where you can transform ideas into prototypes
without hiring programmers, where you can make apps that work specifically for you,
where you can adapt mobile computing to fit your personal needs.

This is the world of App Inventor, Google’s new visual programming tool for building
mobile apps. Based on a visual “blocks” programming method that’s proven success-
ful even with kids, App Inventor dramatically lowers the barriers to creating apps for
Android phones and devices. How about a video game where the characters look like
you and your friends? Or a “did you pick up the milk?” app that reminds you if it’s after
3 p.m. and you’re near the grocery store? Or a quiz app you give your significant other
that’s in fact a surprise marriage proposal? “Question 4: Will you marry me? Press the
button to accept by sending a text message.” Someone really created an App Inventor
app to propose marriage like this, and she said yes!

A Blocks Language for Mobile Phones
App Inventor is a visual, drag-and-drop tool for building mobile apps on the Android
platform. You design the user interface (the visual appearance) of an app using a web-
based graphical user interface (GUI) builder, then you specify the app’s behavior by
piecing together “blocks” as if you were working on a puzzle.

Figure 0-1 shows the blocks for an early version of an app created by Daniel Finnegan, a
university student who had never programmed before. Can you tell what the app does?

xvi  Preface

Figure 0-1. App Inventor blocks specify the functionality of your app

The app is a text “answering machine.” You launch it when you’re driving and it auto-
responds to the texts you receive.

Because the blocks are more understandable than traditional programming code,
you’re immediately drawn in, and the real-world utility gets you asking questions like:
Can I make it so the received texts are spoken aloud? Can I make it so the response
sent back could be customized? Can I write an app that lets people vote for something
by text, like on American Idol? The answer to all these questions is “yes,” and in this
book, we’ll show you how.

What Can You Do with App Inventor?
Play

Creating apps for your phone is fun, and App Inventor promotes exploration and
discovery. Just open App Inventor in a web browser, connect your phone, and
start putting together blocks like those in Figure 0-1. You can immediately see
and interact with the app you’re building on the phone. So you’re programming,
but you’re also emailing your friend to send you a text to test your app, or you’re
controlling a LEGO NXT robot with the app you just built, or you’re unplugging
the phone and walking outside to see if your app is using the location sensor
correctly.

Prototype
Have an idea for an app? Instead of writing it down on a napkin or letting it float
off into the ether, build a quick prototype. Prototypes are incomplete and unre-
fined working models of your idea. Expressing an idea in text is like writing a to a
friend or loved one with prose; think of an App Inventor prototype as poetry to a
venture capitalist. In this way, App Inventor can serve as an electronic napkin for
mobile app development.

Preface  xvii 

Build apps with personal utility
In the current state of the mobile app world, we’re stuck with the apps we’re given.
Who hasn’t complained about an app and wished it could be personalized or ad-
justed in some way? With App Inventor, you can build an app exactly how you
want it. In Chapter 3, you’ll build a MoleMash game that lets you score points by
touching a randomly moving mole. But instead of using the image of the mole
in the tutorial, you can customize it so that you mash a picture of your brother or
sister—something that only you might want to do, but who cares? In Chapter 8,
you’ll write a quiz app that asks questions about US Presidents, but you can easily
customize it to ask questions on any topic you want, from your favorite music to
your family history.

Develop complete apps
App Inventor is not just a prototyping system or an interface designer—you can
build complete, general-purpose apps. The language provides all the fundamen-
tal programming building blocks like loops and conditionals, but in block form.

Teach and learn
Whether you’re at a middle school, high school, or university, App Inventor is a
great teaching and learning tool. It’s great for computer science, but is also a ter-
rific tool for math, physics, entrepreneurship, and just about any other discipline.
The key is that you learn by creating. Instead of memorizing formulas, you build
an app to, say, find the closest hospital (or mall!). Instead of writing an essay on
Black History, you create a multimedia quiz app with video and speeches from
Martin Luther King, Jr., and Malcolm X. We think App Inventor, and this book, can
be a great tool in classes throughout the curriculum.

Why App Inventor Works
Most people say that App Inventor is easy to use because of its visual, drag-and-drop
interface. But what does this mean? Why is App Inventor so easy to use?

You don’t have to remember and type instructions
One of the biggest sources of frustration for beginning programmers comes from
typing in code and having the computer spit back indecipherable error messages.
This frustration discourages many beginners from programming before they even
get to the more fun, logical problem solving.

You choose from a set of options
With App Inventor, the components and blocks are organized into drawers that
are readily available to you. You program by finding a block—which helps specify
the functionality you want to build—and dragging it into the program. You don’t
have to remember what the instructions are or refer to a programming manual.

xviii  Preface

Only some blocks plug in to each other
Instead of chastising programmers with cryptic error messages, App Inventor’s
blocks language restricts you from making many mistakes in the first place. For
instance, if a function block expects a number, you can’t plug in text. This doesn’t
eliminate all errors, but it sure helps.

You deal with events directly
Traditional programming languages were designed when programming was like
working with recipes, or sets of instructions. But with graphical interfaces, and
especially with mobile apps where events can happen at any time (for example,
receiving a text message or phone call), most programs are not recipes, but are
instead sets of event handlers. An event handler is a way of saying, “When this
happens, the app does this.” In a traditional language like Java, you have to un-
derstand classes, objects, and special objects called listeners to express a simple
event. With App Inventor, you can say, “When a user clicks this button...” or “When
a text is received...” by dragging out a “When” block.

What Kind of Apps Can You Build?
You can build many different types of apps with App Inventor. Use your imagination,
and you can create all kinds of fun, useful apps.

Games
People often begin by building games like MoleMash (Chapter 3) or apps that
let you draw funny pictures on your friend’s faces (Chapter 2). As you progress,
you can build your own versions of more complex games like Pac-Man and Space
Invaders. You can even use the phone’s sensors and move characters by tilting the
phone (Chapter 5).

Educational software
App building is not limited to simple games. You can also build apps that inform
and educate. You can create a quiz app (Chapter 8) to help you and your class-
mates study for a test, or even a create-a-quiz app (Chapter 10) that lets the users
of your app create their own quizzes (think of all the parents that would love this
one for those long road trips!).

Location-aware apps
Because App Inventor provides access to a GPS-location sensor, you can build
apps that know where you are. You can build an app to help you remember where
you parked your car (Chapter 7), an app that shows the location of your friends
or colleagues at a concert or conference, or your own custom tour app of your
school, workplace, or a museum.

Preface  xix 

High-tech apps
You can create apps that scan bar codes, talk, listen (recognize words), play music,
make music (Chapter 9), play video, detect the phone’s orientation and accelera-
tion, take pictures, and make phone calls. Smartphones are like Swiss-Army knives
for technology, and a group of Google engineers has dedicated themselves to
making that technology easy to control through App Inventor.

SMS apps
“No Texting While Driving” (Chapter 4) is just one example of the SMS processing
apps you can build. You can also write an app that periodically texts “missing you”
to your loved ones, or an app like “Broadcast Hub” (Chapter 11) that helps coordi-
nate large events. Want an app that lets your friends vote for things by texting, like
on American Idol? You can build it with App Inventor.

Apps that control robots
Chapter 12 shows how to create an app that acts as a controller for a LEGO robot.
You can use the phone as a remote control, or you can program it to be a “brain”
that the robot carries around with it. The robot and phone communicate via
Bluetooth, and App Inventor’s Bluetooth components let you create similar apps
that control other Bluetooth devices.

Complex apps
App Inventor dramatically lowers the entrance barrier to programming and lets
you build flashy, high-tech apps within hours. But the language also provides
loops, conditionals, and other programming and logic constructs necessary to
build apps with complex logic. You’ll be surprised at how fun such logic problems
can be when you’re trying to build an app.

Web-enabled apps
App Inventor also provides a way for your apps to communicate with the Web.
You can write apps that pull in data from Twitter or an RSS feed, or an Amazon
Bookstore Browser that lets you check the online cost of a book by scanning its
barcode.

Who Can Build Apps?
App Inventor is freely available for anyone to use. It runs online (instead of directly on
your computer) and is accessible from any browser. You don’t even need a phone to
use it: you can test your apps on an included Android emulator. As of January 2011,
there were tens of thousands of active App Inventor users and hundreds of thousands
of apps.

Who are these app builders? Were they already programmers when they started?
Some of them were, but most were not. One of the most telling experiences has been
the courses that coauthor David Wolber taught at the University of San Francisco. At

xx  Preface

USF, App Inventor is taught as part of a general education computer science course
targeting primarily business and humanities students. Many students take the course
because they either hate or are afraid of math, and the course fulfills the dreaded
Math Core requirement. The vast majority have never even dreamed of writing a
computer program.

Despite their lack of prior experience, the students have been successful in learning
App Inventor and building great apps. An English major created the first “No Texting
While Driving” app; two communications majors created “Android, Where’s My Car?”;
and an International Studies major created the “BroadcastHub” app (Chapter 11).
When an art major knocked on Wolber’s office door one night well after hours, asking
how to write a while loop, he knew that App Inventor had dramatically changed the
landscape.

The media grasped the significance as well. The New York Times called App Inventor
“Do-It-Yourself App Creation Software.” The San Francisco Chronicle reported on the
USF students’ work in an article, “Google brings app making to the masses.” Wired
magazine featured Daniel Finnegan, the author of “No Texting While Driving,” and
wrote that “Finnegan’s story illustrates a powerful point: It’s time for computer pro-
gramming to be democratized.“

The cat is, as they say, out of the bag (your first app will involve a kitty, by the way).
App Inventor is now used in high school courses; in the Technovation Challenge, a San
Francisco Bay Area after-school program for high school girls; the Lakeside School in
Seattle; and in new introductory courses at several universities. There are now thou-
sands of hobbyists, businesspersons, marriage-proposers, and tinkerers roaming the
App Inventor site and forum (http://appinventor.googlelabs.com/forum/). Want to get
in on the action? No programming experience is required!

Conventions Used in This Book
This book uses the following typographical conventions:

Bold, green text
Used to refer to program blocks that appear in App Inventor programs.

Italic
Used to indicate email addresses, URLs, filenames, pathnames, and to emphasize
terms when they’re first introduced.

Constant width
Indicates Python code and component, property, variable, and function names.

Preface  xxi 

This icon signifies instructions for testing the app being developed.

This icon indicates a tip, suggestion, or general note.

How to Use This Book
This book can be used as a textbook for middle school, high school, and university
courses or as a how-to guide for aspiring app developers. The book is split into two
sections: a set of tutorials for building specific apps, and an Inventor’s Manual section
organized more like a typical programming textbook. The tutorials progress in com-
plexity as you go, from “Hello Purr” in Chapter 1—which lets you click a cat to make it
meow—to a web-enabled app that lets you scan a book to view information from the
Amazon web service (Chapter 13).

Working through the tutorials in order is advantageous from a conceptual viewpoint,
but as you start to feel comfortable with the system, you may want to jump around.
The tutorials provide step-by-step instructions and snapshots of the blocks to help,
and you’ll be referred to chapters in the Inventor’s Manual section to help solidify your
understanding of the concepts.

One advantage of having a book at hand is that the App Inventor environment takes
up most of your computer screen, so there’s not really room for an on-screen tutorial
window. We envision folks setting the book next to them as they walk through the
tutorials and build each app. Then, we hope, people will be so engrossed that they’ll
use the book away from the computer, to read the more conceptual Inventor’s Manual
chapters.

For teachers and students, the book can serve as a textbook for an introductory com-
puter science course, or as a resource for any course in which students learn by build-
ing. In our experience, a sequence of tutorial→discussion→creativity works best. So
you might first assign the task of completing a couple of the apps in the tutorial chap-
ters, with the minimal expectation of the students mechanically building the apps.
Then you can assign a chapter from the Inventor’s Manual section and slow the process
down with some in-class discussion and lecture. The third phase encourages explora-
tion: have the students build some of the suggested variations at the end of each tuto-
rial, without detailed instruction, and then follow this up with a creative assignment
in which students come up with their own ideas for apps and then implement them.

You can also download files for each chapter, along with complete code samples, here:
http://examples.oreilly.com/0636920016632/.

xxii  Preface

Acknowledgments
The educational perspective that motivates App Inventor holds that computing
can be a vehicle for engaging powerful ideas through active learning. As such, App
Inventor is part of an ongoing movement in computers and education that began
with the work of Seymour Papert and the MIT Logo Group in the 1960s, and whose
influence persists today through many activities and programs designed to support
computational thinking.

App Inventor’s design draws upon prior research in educational computing and upon
Google’s work with online development environments. The visual programming
framework is closely related to the MIT Scratch programming language. The specific
implementation here is based on Open Blocks, which is distributed by MIT’s Scheller
Teacher Education Program and derives from MIT thesis research by Ricarose Roque.
We thank Eric Klopfer and Daniel Wendel of the Scheller Program for making Open
Blocks available and for their assistance in working with it. The compiler that translates
the visual blocks language for implementation on Android uses the Kawa Language
Framework and Kawa’s dialect of the Scheme programming language, developed by
Per Bothner and distributed as part of the GNU Operating System by the Free Software
Foundation.

The authors would like to thank Google and the App Inventor team for their support
of our work and teaching efforts at USF, Mills College, and MIT. Special thanks go
to App Inventor Technical Lead Mark Friedman, Project Manager Karen Parker, and
engineers Sharon Perl and Debby Wallach.

We also owe a special thanks to our O’Reilly editors, Courtney Nash and Brian Jepson,
as well as Kathy Riutzel, Brian Kernighan, Debby Wallach, and Rafiki Cai for their feed-
back and insights.

Finally, we’d like to acknowledge the support of our respective spouses: Ellen’s hus-
band, Keith Golden; Hal’s wife, Lynn Abelson; Liz’s husband, Kevin Looney; and David’s
wife, Minerva Novoa. New mother Ellen is also grateful for the help of nanny Neil
Fullagar.

CHAPTER 1

Hello Purr

This chapter gets you started building apps. It presents the
key elements of App Inventor—the Component Designer
and the Blocks Editor—and leads you through the basic
steps of creating your first app, HelloPurr. When you’re
finished, you’ll be ready to build apps on your own.

A typical first program with a new computer system prints the
message “Hello World” to show that everything is connected
correctly. This tradition goes back to the 1970s and Brian
Kernighan’s work on the C programming language at Bell Labs
(Brian is now a visiting scholar at Google working on the App
Inventor team!). With App Inventor, even the simplest apps do
more than just show messages: they play sounds and react
when you touch the phone. So we’re going to get started right
away with something more exciting; your first app (as shown
in Figure 1-1) will be “HelloPurr,” a picture of a cat that meows
when you touch it and purrs when you shake it.

What You’ll Learn
The chapter covers the following topics:

• Building apps by selecting components and then telling them what to do and
when to do it.

• Using the Component Designer to select components. Some components are
visible on the phone screen and some aren’t.

• Adding media (sounds and images) to apps by uploading them from your
computer.

• Working in the Blocks Editor to assemble blocks that define the components’
behavior.

• Testing apps with App Inventor’s live testing. This lets you see how apps will look
and behave on the phone step by step, even as you’re building them.

• Packaging the apps you build and downloading them to a phone.

Figure 1-1. The
HelloPurr app

2  Chapter 1:  Hello Purr

The App Inventor Environment
You can set up App Inventor using the instructions at http://appinventor.googlelabs
.com/learn/setup/. App Inventor runs primarily through the browser, but you need to
download some software to your computer’s desktop and change some settings on
your phone. Typically you can get set up in just a few minutes, though sometimes
there are issues with setting up device drivers for particular Android phones. If you
have any phone issues, we suggest you get started using the Android emulator that
comes packaged with the App Inventor download.

The App Inventor programming environment has three key parts, all shown in
Figure 1-2:

• The Component Designer, shown on the left side of Figure 1-2, runs in your
browser window. You use it to select components for your app and specify their
properties.

• The Blocks Editor runs in a window separate from the Component Designer—it
is often easiest to arrange this to the right of the Component Designer on your
screen while you are working on your app. You use the Blocks Editor to create
behaviors for the components.

• A phone allows you to actually run and test your app as you are developing it. If
you don’t have an Android phone handy, you can test the apps you build using
the Android emulator (shown in the bottom right of Figure 1-2) that comes inte-
grated with the system.

Figure 1-2. The Component Designer, Blocks Editor, and Android emulator

Designing the Components  3 

You start App Inventor by browsing to http://appinventor.googlelabs.com. If this is
the first time you’ve used App Inventor, you’ll see the Projects page, which will be
mostly blank because you haven’t created any projects yet. To create a project, click
New at the top left of the page, enter the project name “HelloPurr” (one word with no
spaces), and click OK.

The first window that opens is the Component Designer. When it appears, click Open
Blocks Editor in the menu at the top right. The Blocks Editor comes up in a separate
window, aided by a tool called Java Web Start. (You don’t have to worry about all the
Java messages—App Inventor is using Java, which should already be installed on
your computer, to help launch the Blocks Editor.) This process usually takes about 30
seconds.

If everything is OK, the Blocks Editor will appear and you’ll see two buttons near the
top right of the screen, as shown in Figure 1-3.

Figure 1-3. Plug a phone into your computer or click “New emulator”; then, click “Connect to Device”

If you have an Android phone and a USB cable, plug the phone into the computer
and select “Connect to Device.” If instead you want to test the apps you build using
an emulator, click “New emulator” and wait about 30 seconds while the Android
emulator loads. When it is fully operational, click “Connect to Device” so that App
Inventor will run your app in the emulator.

If all is well, you should see a window for the Component Designer, a window for the
Blocks Editor, and the emulator window if you chose that option (your screen should
look something like Figure 1-2, shown previously, but with the windows mostly
empty). If you’re having problems here, review the setup instructions at http://app
inventor.googlelabs.com/learn/setup/.

Designing the Components
The first tool you’ll use is the Component Designer (or just Designer). Components are
the elements you combine to create apps, like ingredients in a recipe. Some compo-
nents are very simple, like a Label component, which shows text on the screen, or a
Button component, which you tap to initiate an action. Other components are more
elaborate: a drawing Canvas that can hold still images or animations; an accelerom-
eter, a motion sensor that works like a Wii controller and detects when you move or
shake the phone; or components that make or send text messages, play music and
video, get information from websites, and so on.

4  Chapter 1:  Hello Purr

When you open the Designer, it will appear as shown in Figure 1-4.

Figure 1-4. The App Inventor Component Designer

The Designer is divided into several areas:

• Toward the center is a white area called the Viewer. This is where you place com-
ponents and arrange them to map out what you want your app to look like. The
Viewer shows only a rough indication of how the app will look, so, for example, a
line of text might break at a different place in your app than what you see in the
Viewer. To see how your app will really appear, you’ll need to either download
the app to your phone (we’ll go through how to do this a bit later, in the section
“Packaging the App for Downloading”) or view it in the emulator that comes
with App Inventor.

• To the left of the Viewer is the Palette, which is a list of components you can select
from. The Palette is divided into sections; at this point, only the Basic components
are visible, but you can see components in other sections of the Palette by clicking
the headers labeled Media, Animation, and so on.

Designing the Components  5 

• To the right of the Viewer is the Components list, which lists the components
in your project. Any component that you drag into the Viewer will show up in
this list. Currently, the project has only one component listed: Screen1, which
represents the phone screen itself.

• Under the Components list is an area that shows the Media (pictures and sound)
in the project. This project doesn’t have any media yet, but you’ll be adding
some soon.

At the far right is a section that shows the Properties of components; when you click
a component in the Viewer, you’ll see its Properties listed here. Properties are details
about each component that you can change. (For example, when clicking on a Label
component, you might see properties related to color, text, font, and so on.) Right
now, it shows the properties of the screen (called Screen1), which include a back-
ground color, a background image, and a title.

For the HelloPurr app, you’ll need two visible components (you can think of these
as components you can actually see in the app): the Label component reading “Pet
the Kitty” and a Button component with an image of a cat in it. You’ll also need a
non-visible Sound component that knows how to play sounds, such as “meow,” and
an Accelerometer component for detecting when the phone is being shaken. Don’t
worry—we’ll walk you through each component step by step.

Making a Label
The first component to add is a Label:

1. Go to the Palette, click Label (which appears about five spots down in the list of
components), and drag it to the Viewer. You’ll see a rectangular shape appear on
the Viewer, with the words “Text for Label1.”

2. Look at the Properties box on the right side of the Designer. It shows the proper-
ties of the label. There’s a property called Text about halfway down, with a box
for the label’s text. Change the text to “Pet the Kitty” and press Return. You’ll see
the text change in the Viewer.

3. Change the BackgroundColor of the label by clicking the box, which currently
reads None, to select a color from the list that appears. Select Blue. Also change
the TextColor of the label to Yellow. Finally, change the FontSize to 20.

The Designer should now appear as shown in Figure 1-5.

6  Chapter 1:  Hello Purr

Figure 1-5. The app now has a label

Be sure you have your phone connected and the Blocks Editor open. You should see
the label appear on the phone as you add it in the Designer. In App Inventor, you
build the application on the phone as you pick the components in the Designer. That
way, you can see right away how your application will look. This is called live testing,
and it also applies to the behaviors you create for the components in the Blocks
Editor, as you’ll see shortly.

Adding the Button
The kitty for HelloPurr is implemented as a Button component—you create a normal
button, and then change the button image to the kitty. To make the basic button
first, go to the Palette in the Designer and click Button (at the top of the list of com-
ponents). Drag it onto the Viewer, placing it below the label. You’ll see a rectangular
button appear on the Viewer. After about 10 seconds, the button should appear on
the phone. Go ahead and tap the phone button—do you think anything will happen?
It won’t, because your app hasn’t told the button to do anything yet. This is the first
important point to understand about App Inventor: for every component you add
in the Designer, you have to move over to the Blocks Editor and create the code to
make something happen with that component (we’ll do that after we finish adding
the components we need in the Designer).

Now we’ve got a button that we’ll use to trigger the sound effect when someone
clicks it, but we really want it to look like the picture of the kitty, not a plain old rect-
angle. To make the button look like the kitty:

Designing the Components  7 

1. First, you need to download a picture of the kitty and save it on your computer
desktop. You can download it from the site for this book at http://examples
.oreilly.com/0636920016632/. The picture is the file called kitty.png. (.png is a
standard image format similar to .jpg and .gif; all of these file types will work in
App Inventor, as will most standard sound files like .mpg or .mp3.) You can also
download the sound file we need, meow.mp3.

2. The Properties box should show the properties of the button. If it doesn’t, click
the image of the button in the Viewer to expose the button’s properties on the
right. In the Properties box, click the area under Image (which currently reads
None). A box appears with a button marked Add.

3. Click Add and you’ll see “Upload file.” Click Choose File, browse to select the kitty.png
file you downloaded to your computer earlier, and click OK.

4. You’ll see a yellow message at the top of the screen: “Uploading kitty.png to
the AppInventor server.” After about 30 seconds, the message and the upload
box will disappear, and kitty.png should be listed as the image property for the
button. You’ll also see this listed in the Media area of the Designer window, just
below the Components list. And if you look at the phone, you’ll see the kitty
picture displayed—the button now looks like a kitty.

5. You may have also noticed that the kitty picture on your phone has the words
“Text for button 1” displayed on it. You probably don’t want that in your app, so
go ahead and change the Text property of Button1 to something like “Pet the
Kitty,” or just delete the text altogether.

Now the Designer should appear as shown in Figure 1-6.

Figure 1-6. The app with a label and a button with an image on it

8  Chapter 1:  Hello Purr

Adding the Meow Sound
In your app, the kitty will meow when you tap the button. For this, you’ll need to
add the meow sound and program the button behavior to play that sound when the
button is clicked:

1. If you haven’t downloaded the meow.mp3 file to your computer’s desktop, do so
now at http://examples.oreilly.com/0636920016632/.

2. Go to the Palette at the left of the Designer window and click the header marked
Media to expand the Media section. Drag out a Sound component and place it in
the Viewer. Wherever you drop it, it will appear in the area at the bottom of the
Viewer marked “Non-visible components.” Non-visible components are objects
that do things for the app but don’t appear in the visual user interface of the app.

3. Click Sound1 to show its properties. Set its Source to meow.mp3. You’ll need to
follow the same steps to upload this file from your computer as you did for the
kitty picture. When you’re done, you should see both kitty.png and meow.mp3
listed in the Media section of the Designer.

You should now have the components depicted in Table 1-1.

Table 1-1. The components you’ve added to the HelloPurr app

Component type Palette group Name of component Purpose

Button Basic Button1 Press to make the kitty meow.

Label Basic Label1 Shows the text “Pet the Kitty.”

Sound Media Sound1 Play the meow sound.

Adding Behaviors to the Components
You’ve just added Button, Label, and Sound components as the building blocks for
your first app. Now let’s make the kitty meow when you tap the button. You do this
with the Blocks Editor. If your Blocks Editor isn’t yet open, click “Open the Blocks
Editor” in the top right of the Component Designer.

Look at the Blocks Editor window. This is where you tell the components what to do
and when to do it. You’re going to tell the kitty button to play a sound when the user
taps it. If components are ingredients in a recipe, you can think of blocks as the cook-
ing instructions.

Adding Behaviors to the Components  9 

Making the Kitty Meow
At the top left of the window, you’ll see buttons labeled “Built-In” and “My Blocks.”
Click My Blocks, and you’ll see a column that includes a drawer for each component
you created in the Designer: Button1, Label1, Screen1, and Sound1. When you click
a drawer, you get a bunch of options (blocks) for that component you created. (Don’t
worry about the Built-In column for now—we’ll get to that in Chapter 2.) Click the
drawer for Button1. The drawer opens, showing a selection of blocks that you can
use to tell the button what to do, starting with Button1.Click at the top, as shown in
Figure 1-7.

Figure 1-7. Clicking Button1 shows the component’s blocks

Click the block labeled Button1.Click and drag it into the workspace. When you’re
looking for the block, you’ll notice that the word “when” is smaller than Button1
.Click. Blocks including the word “when” are called event handlers; they specify what
components should do when some particular event happens. In this case, the event
we’re interested in happens when the app user clicks on the kitty (which is really a
button), as shown in Figure 1-8. Next, we’ll add some blocks to program what will
happen in response to that event.

10  Chapter 1:  Hello Purr

Figure 1-8. You’ll specify a response to the user clicking within the Button.Click block

Click Sound1 in My Blocks to open the drawer for the sound component, and drag
out the call Sound1.Play block. (Remember, earlier we set the property for Sound1
to the meow sound file you downloaded to your computer.) You may notice at this
point that the call Sound1.Play block is shaped so it can fit into a gap marked
“do” in the Button1.Click block. App Inventor is set up so that only certain blocks fit
together; this way, you always know you’re connecting blocks that actually work
together. In this case, blocks with the word “call” make components do things. The
two blocks should snap together to form a unit, as shown in Figure 1-9, and you’ll
hear a snapping sound when they connect.

Figure 1-9. Now when someone clicks the button, the meow sound will play

Unlike traditional programming code (which often looks like a jumbled mess of
gobbledygook “words”), blocks in App Inventor spell out the behaviors you’re trying
to create. In this case, we’re essentially saying, “Hey, App Inventor, when someone
clicks on the kitty button, play the meow sound.”

Adding Behaviors to the Components  11 

Test your app. Let’s check to make sure everything is working
properly—it’s important to test your app each time you add some-
thing new. Tap the button on the phone (or click it using the emula-
tor). You should hear the kitty meow. Congratulations, your first app
is running!

Adding a Purr
Now we’re going to make the kitty purr and meow when you tap the button. We’ll
simulate the purr by making the phone vibrate. That may sound hard, but in fact,
it’s easy to do because the Sound component we used to play the meow sound can
make the phone vibrate as well. App Inventor helps you tap into this kind of core
phone functionality without having to deal with how the phone actually vibrates.
You don’t need to do anything different in the Designer; you can just add a second
behavior to the button click in the Blocks Editor:

1. Go to the Blocks Editor and click Sound1 in My Blocks to open the drawer.

2. Select call Sound1.Vibrate and drag it under the call Sound1.Play block in the
Button1.Click slot. The block should click into place, as shown in Figure 1-10. If
it doesn’t, try dragging it so that the little dip on the top of call Sound1.Vibrate
touches the little bump on the bottom of call Sound1.Play.

Figure 1-10. Playing the sound and vibrating on the Click event

3. You’ve likely noticed that the call Sound1.Vibrate block includes the text “milli-
secs” at the top right. An open slot in a block means you can plug something into
it to specify more about how the behavior should work. In this case, you must
tell the Vibrate block how long it should vibrate. You need to input this time
in thousandths of a second (milliseconds), which is pretty common for many
programming languages. So, to make the phone vibrate for half a second, put in

12  Chapter 1:  Hello Purr

a value of 500 milliseconds. To put in a value of 500, you need to grab a number
block. Click in an empty spot on the Designer screen, and then click the green
Math button in the menu that pops up, as shown in Figure 1-11. You should see
a drop-down list, with 123 as the first item; 123 indicates a block that represents
a number.

Figure 1-11. Opening the Math drawer

4. Click the 123 at the top of the list and you’ll see a green block with the number
123, as shown in Figure 1-12.

Figure 1-12. Choosing a number block (123 is the default value)

5. Change the 123 to 500 by clicking it and typing a new value, as shown in
Figure 1-13.

Figure 1-13. Changing the value to 500

6. Plug the 500 number block into the socket at the right of call Sound1.Vibrate,
as shown in Figure 1-14.

Adding Behaviors to the Components  13 

Figure 1-14. Plugging the 500 into the millisecs slot

Test your app. Try it! Tap the button on the phone, and you’ll feel
the purr for half a second.

Shaking the Phone
Now let’s add a final element that taps into another cool feature of Android phones:
make the kitty meow when you shake the phone. To do this, you’ll use a component
called AccelerometerSensor that can sense when you shake or move the phone
around.

1. In the Designer, expand the Sensors area in the Palette components list and drag
out an AccelerometerSensor. Don’t worry about where you drag it—as with
any non-visible component, no matter where you place it in the Viewer, it will
move to the “Non-visible components” section at the bottom of the Viewer.

2. You’ll want to treat someone shaking the phone as a different, separate event
from the button click. That means you need a new event handler. Go to the
Blocks Editor. There should be a new drawer for AccelerometerSensor1 under
My Blocks. Open it and drag out the AccelerometerSensor1.Shaking block—it
should be the second block in the list.

3. Just as you did with the sound and the button click, drag out a call Sound1.Play
block and fit it into the gap in AccelerometerSensor1.Shaking. Try it out by shak-
ing the phone.

Figure 1-15 shows the blocks for the completed HelloPurr app.

14  Chapter 1:  Hello Purr

Figure 1-15. The blocks for HelloPurr

Packaging the App for Downloading
App Inventor is a cloud computing tool, meaning your app is stored on Google’s
online servers as you work. So if you close App Inventor, your app will be there when
you return; you don’t have to save anything on your computer as you would with a
Word file or a music track. This also allows you to easily test the app while connected
to your phone (what we call live testing), without having to download anything to
your phone, either. The only problem is that if you disconnect your phone from App
Inventor, the app running on the phone will stop, and you won’t find an icon for it
anywhere because it was never truly installed.

You can package up and install the completed app so that it works on any phone,
even when it’s not connected to the computer. First, make sure your phone allows
apps to be downloaded from places other than the Android Market. Typically, you
do this by going to Settings→Applications on your phone and checking the box
next to “Unknown sources.” Then, go to back into the Designer in App Inventor, click
“Package for Phone,” and select “Download to Connected Phone.” You should see the
messages “Saving” and then “Packaging,” a process that takes up to a minute. After
the “Packaging” message disappears, continue to wait for another 10–15 seconds while
the finished app is downloaded to the phone. You’ll get a download confirmation
when everything is complete.

Once you’ve downloaded it, look at the apps available on your phone, and you’ll now
see HelloPurr, the app we just built. You run it just like any other app. (Make sure that
you run your new app, not the App Inventor Phone application.) You can now unplug
or even reboot the phone and kill all applications, and your new packaged application
will still be there.

It’s important to understand that this means your packaged app is now separate
from the project on App Inventor. You can do more work on the project in App
Inventor by connecting the phone with the USB cable as before. But that won’t

Sharing the App  15 

change the packaged app that is now installed on your phone. If you make further
changes to your app in App Inventor, you’ll want to package the result and download
the new version to replace the old one on the phone.

Go ahead and package your HelloPurr app so you have it on your phone. Once
you’ve done this, you can share it with your family and friends, too!

Sharing the App
You can share your app in a couple of ways. To share the executable app, first click
“Package for Phone” and choose “Download to this Computer.” This will create a file
with a .apk extension on your computer. You need to upload this file so that it is
accessible on the Web. Once the app is on the Web, other people can install it on
their phones by opening the phone’s browser and downloading it. Just let them
know they need to allow “unknown sources” in their phone’s Application settings in
order to install apps that aren’t from the Android Market.

You can also share the source code (blocks) of your app with another App Inventor
developer. To do this, click My Projects, check the app you want to share (in this case,
HelloPurr), and select More Actions→Download Source. The file created on your
computer will have a .zip extension. You can email this file to someone, and she can
open App Inventor, choose More Actions→Upload Source, and select the .zip file.
This will give the user her own complete copy of your app, which she can then edit
and customize without affecting your version.

The process of sharing apps will soon be easier and more fun—work is currently
underway on a community sharing site.

Variations
Now that you’ve built a complete app and had the chance to play with it (and maybe
download it to share with other people), you might have noticed a couple of things.
Take a look at the following items and consider how you’d address them in your app.
As you’ll likely soon discover, you’ll often build an app, find ways to improve and
change it, and then go back into it to program those new ideas. Don’t worry, that’s a
good thing—it means you’re on your way to becoming a full-fledged app developer!

• As you shake the phone, the meows will sound strange, as if they are echoing.
That’s because the accelerometer sensor is triggering the shaking event many
times a second, so the meows are overlapping. If you look at the Sound com-
ponent in the Designer, you’ll see a property called Minimum interval. That
determines how close together successive sounds can start. It’s currently set
at a half-second (500 milliseconds), which is less than the duration of a single
meow. By playing with the minimum interval, you can change how much the
meows overlap.

16  Chapter 1:  Hello Purr

• If you run the packaged app and walk around with the phone in your pocket,
your phone will meow every time you move suddenly—something you might
find embarrassing. Android apps are typically designed to keep running even
when you’re not looking at them; your app continues to communicate with the
accelerometer and the meow just keeps going. To really quit the app, bring up
HelloPurr and press the phone’s menu button. You’ll be offered an option to stop
the application.

Summary
Here are some of the concepts we’ve covered in this chapter:

• You build apps by selecting components in the Designer and then telling them
what to do and when to do it in the Blocks Editor.

• Some components are visible and some aren’t. The visible ones appear in the
user interface of the app. The non-visible ones do things like play sounds.

• You define components’ behavior by assembling blocks in the Blocks Editor. You
first drag out an event handler like Button1.Click, and then place command
blocks like Sound.Play within it. Any blocks within Button1.Click will be per-
formed when the user clicks the button.

• Some commands need extra information to make them work. An example is
Vibrate, which needs to know how many milliseconds to vibrate. These values
are called arguments.

• Numbers are represented as number blocks. You can plug these into commands
that take numbers as arguments.

• App Inventor has sensor components. The AccelerometerSensor can detect
when the phone is moved.

• You can package the apps you build and download them to the phone, where
they run independently of App Inventor.

PART I

12 Customizable Apps

This section provides step-by-step instructions for building 12 Android apps. Though
the apps are very different in nature, they build upon each other conceptually, the
later chapters being the most complex in terms of the programming knowledge
required.

At the end of each chapter, there are suggestions for varying and extending the app,
the idea being that the best way to learn programming is to switch back and forth
between following instructions and exploring on your own. You’ll also be pointed to
related chapters in the “Inventor’s Manual” section of the book that provide in-depth
discussion of the concepts learned.

CHAPTER 2

PaintPot

This tutorial introduces the Canvas component
for creating simple, two-dimensional (2D)
graphics. You’ll build PaintPot, an app that lets
the user draw on the screen in different colors,
and then update it to allow him to take his own
picture and draw on that instead. On a
historical note, PaintPot was one of the first
programs developed to demonstrate the
potential of personal computers, as far back as
the 1970s. Back then, making something like
this simple drawing app was a very complex
undertaking, and the results were pretty
unpolished. But now with App Inventor, anyone
can quickly put together a fairly cool drawing
app, which is a great starting point for building
2D games.

With the PaintPot app shown in Figure 2-1, you can:

• Dip your finger into a virtual paint pot to draw in
that color.

• Drag your finger along the screen to draw a line.

• Poke the screen to make dots.

• Use the button at the bottom to wipe the screen
clean.

• Change the dot size to large or small with the
buttons at the bottom.

• Take a picture with the camera and then draw on
that picture.

Figure 2-1. The PaintPot app

20  Chapter 2:  PaintPot

What You’ll Learn
This tutorial introduces the following concepts:

• Using the Canvas component for drawing.

• Handling touch and drag events on the phone’s surface.

• Controlling screen layout with arrangement components.

• Using event handlers that take arguments.

• Defining variables to remember things like the dot size the user has chosen for
drawing.

Getting Started
Make sure your computer and your phone are set up to use App Inventor, and
browse to the App Inventor website at http://appinventor.googlelabs.com. Start a
new project in the Component Designer window and name it “PaintPot”. Open the
Blocks Editor, click “Connect to Device,” and make sure the phone has started the App
Inventor app.

To get started, go to the Properties panel on the right of the Designer and change
the screen title to “PaintPot” (no more Screen1 here!). You should see this change on
the phone, with the new title displayed in the title bar of your app.

If you’re concerned about confusing your project name and the screen name, don’t
worry! There are three key names in App Inventor:

• The name you choose for your project as you work on it. This will also be the
name of the application when you package it for the phone. Note that you can
click Save As in the Component Designer to start a new version or rename a
project.

• The component name Screen1, which you’ll see in the panel that lists the applica-
tion’s components. You can’t change this name in the current version of App
Inventor.

• The title of the screen, which is what you’ll see in the phone’s title bar. This starts
out being Screen1, which is what you used in HelloPurr. But you can change it, as
we just did for PaintPot.

Designing the Components
You’ll use these components to make the app:

• Three Button components for selecting red, blue, or green paint, and a
HorizontalArrangement component for organizing them.

Designing the Components  21 

• One Button component for wiping the drawing clean, and two for changing the
size of the dots that are drawn.

• A Canvas component, which is the drawing surface. Canvas has a
BackgroundImage property, which we’ll set to the kitty.png file from the
HelloPurr tutorial in Chapter 1. Later in this chapter, you’ll modify the app so the
background can be set to a picture the user takes.

Creating the Color Buttons
First, create the three color buttons using the following instructions:

1. Drag a Button component onto the viewer and change its Text attribute to
“Red” and make its BackgroundColor red.

2. Click Button1 in the components list in the Viewer to highlight it (it might
already be highlighted) and click Rename to change its name from Button1 to
RedButton. Note that spaces aren’t allowed in component names, so it’s com-
mon to capitalize the first letter of each word in the name.

3. Similarly, make two more buttons for blue and green, named BlueButton and
GreenButton, placing them under the red button vertically. Check your work up
to this point against Figure 2-2.

Figure 2-2. The Viewer showing the three buttons created

Note that in this project, you’re changing the names of the components rather than
leaving them as the default names as you did with HelloPurr. Using more meaning-
ful names makes your projects more readable, and it will really help when you move
to the Blocks Editor and must refer to the components by name. In this book, we’ll
use the convention of having the component name end with its type (for example,
RedButton).

Test your app. If you haven’t clicked “Connect to Device,” do so now
and check how your app looks on either your phone (if it’s plugged
in) or in the emulator.

22  Chapter 2:  PaintPot

Using Arrangements for Better Layouts
You should now have three buttons stacked on top of one another. But for this app,
you want them all lined up next to one another at the top of the screen, as shown in
Figure 2-3. You do this using a HorizontalArrangement component:

1. From the Palette’s Screen Arrangement category, drag out a
HorizontalArrangement component and place it under the buttons.

2. In the Properties panel, change the Width of the HorizontalArrangement to “Fill
parent” so that it fills the entire width of the screen.

3. Move the three buttons one by one into the HorizontalArrangement component.
Hint: You’ll see a blue vertical line that shows where the piece you’re dragging
will go.

Figure 2-3. The three buttons within a horizontal arrangement

If you look in the list of project components, you’ll see the three buttons indented
under the HorizontalArrangement component to show that they are now its sub-
components. Notice that all the components are indented under Screen1.

Test your app. You should also see your three buttons lined up
in a row on the phone screen, although things might not look
exactly as they do on the Designer. For example, the outline around
HorizontalArrangement appears in the Viewer but not on the
phone.

In general, you use screen arrangements to create simple vertical, horizontal, or tabu-
lar layouts. You can also create more complex layouts by inserting (or nesting) screen
arrangement components within each other.

Adding the Canvas
The canvas is where the user will draw circles and lines. Add it, and add the kitty.png
file from HelloPurr as the BackgroundImage:

Designing the Components  23 

1. From the Palette’s Basic category, drag a Canvas component onto the Viewer.
Change its name to DrawingCanvas. Set its Width to “Fill parent.” Set its Height
to 300 pixels.

2. If you’ve completed the HelloPurr tutorial (Chapter 1), you have already down-
loaded the kitty.png file. If you haven’t, you can download it from http://examples
.oreilly.com/0636920016632/.

3. Set the BackgroundImage of the Canvas to the kitty.png file. In the Property
editor, the BackgroundImage will be set to None. Click the field and choose Add
to upload the kitty.png file.

4. Set the PaintColor of the Canvas to red so that when the user starts the app but
hasn’t clicked on a button yet, his drawings will be red. Check to see that what
you’ve built looks like Figure 2-4.

Figure 2-4. The Canvas component has a BackgroundImage of the kitty picture

Arranging the Bottom Buttons and the Camera Component
1. From the Palette, drag out a second HorizontalArrangement and place it under

the canvas. Then drag two more Button components onto the screen and place
them in this bottom HorizontalArrangement. Change the name of the first but-
ton to TakePictureButton and its Text property to “Take Picture”. Change the
name of the second button to WipeButton and its Text property to “Wipe”.

2. Drag two more Button components from the Palette into the Horizontal
Arrangement, placing them next to WipeButton.

24  Chapter 2:  PaintPot

3. Name the buttons BigButton and SmallButton, and set their Text to “Big Dots”
and “Small Dots”, respectively.

4. From the Media Palette, drag a Camera component into the Viewer. It will appear
in the non-visible component area.

You’ve now completed the steps to set the appearance of your app as shown in
Figure 2-5.

Figure 2-5. The complete user interface for PaintPot

Test your app. Check the app on the phone. Does the kitty picture
now appear under the top row of buttons? Does the bottom row of
buttons appear?

Adding Behaviors to the Components
The next step is to define how the components behave. Creating a painting program
might seem overwhelming, but rest assured that App Inventor has done a lot of the
heavy lifting for you: there are easy-to-use blocks for handling the user’s touches and
drags, and for drawing and taking pictures.

Adding Behaviors to the Components  25 

In the Designer, you added a Canvas component named DrawingCanvas. Like
all canvas components, DrawingCanvas has a Touched event and a Dragged
event. You’ll program the DrawingCanvas.Touched event so that it calls
DrawingCanvas.DrawCircle. You’ll program the DrawingCanvas.Dragged event
to call DrawingCanvas.DrawLine. You’ll then program the buttons to set the
DrawingCanvas.PaintColor property, clear the DrawingCanvas, and change the
BackgroundImage to a picture taken with the camera.

Adding the Touch Event to Draw a Dot
First, you’ll arrange things so that when you touch the DrawingCanvas, you draw a
dot at the spot you touch:

1. In the Blocks Editor, click My Blocks, select the drawer for the DrawingCanvas,
and drag the DrawingCanvas.Touched block to the workspace. As soon as you
drag the block out, the three plugs on the right automatically fill in with name
blocks for x, y, and touchedSprite, as shown in Figure 2-6.

Figure 2-6. The event comes with information about where the screen is touched

Note. If you’ve completed the HelloPurr app in Chapter 1, you’re
familiar with Button.Click events, but not with Canvas events.
Button.Click events are fairly simple because there’s nothing to
know about the event other than that it happened. Some event
handlers, however, come with information about the event called
arguments. The DrawingCanvas.Touched event tells you the x and
y coordinates of the touch within the canvas. It also tells you if an
object within the DrawingCanvas (in App Inventor, this is called a
sprite) was touched, but we won’t need that until Chapter 3. The x
and y coordinates are the arguments we’ll use to note where the user
touched the screen, so we can then draw the dot at that position.

2. Drag out a DrawingCanvas.DrawCircle command from the DrawingCanvas
drawer and place it within the DrawingCanvas.Touched event handler, as
shown in Figure 2-7.

26  Chapter 2:  PaintPot

Figure 2-7. When the user touches the canvas, the app draws a circle

On the right side of the DrawingCanvas.DrawCircle block, you’ll see three slots
for the arguments we need to fill in: x, y, and r. The x and y arguments specify
the location where the circle should be drawn, and r determines the radius (or
size) of the circle. The yellow warning box with the exclamation point at the top
of the DrawingCanvas.Touched event handler denotes that these slots haven’t
yet been filled. We’ll build the blocks to do that next.

This event handler can be a bit confusing because the DrawingCanvas
.Touched event also has x and y slots; just keep in mind that the x and y for the
DrawingCanvas.Touched event tell you where the user touched, while the x
and y for the DrawingCanvas.DrawCircle event are open slots for you to specify
where the circle should be drawn.

Because you want to draw the circle where the user touched, plug in the x and y
values from DrawingCanvas.Touched as the values of the x and y parameters in
DrawingCanvas.DrawCircle.

Note. Do not grab the arguments of the Touched event directly,
even though this might seem logical! The fact that the arguments can
even be grabbed is an unfortunate design aspect of App Inventor.
Instead, you want to grab these values from the My Definitions
drawer, as shown in Figure 2-8.

Figure 2-8. The system has added references to the event arguments touchedSprite, y, and x

Adding Behaviors to the Components  27 

3. Open the My Definitions drawer within My Blocks and find the blocks for value x
and value y.

The blocks were automatically created for you by App Inventor when you dragged
out the DrawingCanvas.Touched event handler block: they are references to
the x and y arguments (or names) of that event. Drag out the value x and value
y blocks and plug them into the corresponding sockets in the DrawingCanvas
.DrawCircle block so they resemble what is shown in Figure 2-9.

Figure 2-9. The app knows where to draw (x,y), but we still need to specify how big the circle should be

4. You’ll also need to specify the radius, r, of the circle to draw. The radius is measured
in pixels, which is the tiniest dot that can be drawn on the screen. For now, set it to
5: click in a blank area of the screen to bring up the shortcut menu, and then select
the Math folder. Select 123 from the drop-down list to create a number block.
Change the 123 to 5 and plug that in for the r slot. When you do, the yellow box
in the top-left corner will disappear as all the slots are filled. Figure 2-10 illustrates
how the final DrawingCanvas.Touched event handler should look.

Note. Note that you could have created the number 5 block by
simply typing a 5 in the Blocks Editor, followed by Return. This is an
example of typeblocking: if you start typing, the Blocks Editor shows
a list of blocks whose names match what you are typing; if you type
a number, it creates a number block.

28  Chapter 2:  PaintPot

Figure 2-10. When the user touches the canvas, a circle of radius 5 will be drawn at (x,y)

Test your app. Try out what you have so far on the phone. Touch the
canvas—your finger should leave a dot at each place you touch. The
dots will be red if you set the Canvas.PaintColor property to red in
the Component Designer (otherwise, it’s black, as that’s the default).

Adding the Drag Event That Draws a Line
Next, you’ll add the drag event handler. Here’s the difference between a touch and
a drag:

• A touch is when you place your finger on the canvas and lift it without moving it.

• A drag is when you place your finger on the canvas and move it while keeping it
in contact with the screen.

In a paint program, dragging your finger across the screen appears to draw a giant,
curved line along your finger’s path. What you’re actually doing is drawing hundreds
of tiny, straight lines; each time you move your finger, even a little bit, you extend the
line from your finger’s last position to its new position.

1. From the DrawingCanvas drawer, drag the DrawingCanvas.Dragged block to
the workspace. You should see the event handler as it is shown in Figure 2-11.

The DrawingCanvas.Dragged event comes with seven arguments:

startx, starty
The position of your finger back where the drag started.

currentx, currenty
The current position of your finger.

prevx, prevy
The immediately previous position of your finger.

Adding Behaviors to the Components  29 

draggedSprite
The argument that will be true if the user drags directly on an image sprite.
We won’t use this argument in this tutorial.

Figure 2-11. A Dragged event has even more arguments than Touched

2. From the DrawingCanvas drawer, drag the DrawingCanvas.DrawLine block into
the DrawingCanvas.Dragged block, as shown in Figure 2-12.

Figure 2-12. Adding the capability to draw lines

The DrawingCanvas.DrawLine block has four arguments, two for each point
that determines the line: (x1,y1) is one point, while (x2,y2) is the other. Can you
figure out what values need to be plugged into each argument? Remember, the
Dragged event will be called many times as you drag your finger across the can-
vas: the app draws a tiny line each time your finger moves, from (prevx,prevy) to
(currentX,currentY). Let’s add those to our DrawingCanvas.DrawLine block:

30  Chapter 2:  PaintPot

3. Click the My Definitions drawer. You should see the blocks for the arguments
you need. Drag the corresponding value blocks to the appropriate slots in
DrawingCanvas.Dragged. value prevX and value prevY should be plugged into
the x1 and y1 slots. value currentX and value currentY should be plugged into
the x2 and y2 slots, as shown in Figure 2-13.

Figure 2-13. As the user drags, the app will draw a line from the previous spot to the current one

Test your app. Try this behavior on the phone: drag your finger
around on the screen to draw lines and curves. Touch the screen to
make spots.

Adding Button Event Handlers
The app you’ve built lets the user draw, but it always draws in red. Next, add event
handlers for the color buttons so users can change the paint color, and another for
WipeButton so they can clear the screen and start over.

In the Blocks Editor:

1. Switch to the My Blocks column.

2. Open the drawer for RedButton and drag out the RedButton.Click block.

3. Open the DrawingCanvas drawer. Drag out the set DrawingCanvas.PaintColor
to block (you may have to scroll through the list of blocks in the drawer to find it)
and place it in the “do” section of RedButton.Click.

Adding Behaviors to the Components  31 

4. Switch to the Built-In column. Open the Colors drawer and drag out the block for
the color red and plug it into the set DrawingCanvas.PaintColor to block.

5. Repeat steps 2–4 for the blue and green buttons.

6. The final button to set up is WipeButton. Switch back to the My Blocks column
and drag out a WipeButton.Click from the ButtonWipe drawer. From the
DrawingCanvas drawer, drag out DrawingCanvas.Clear and place it in the
WipeButton.Click block. Confirm that your blocks show up as they do in
Figure 2-14.

Figure 2-14. Clicking the color buttons changes the canvas’s PaintColor; clicking Wipe clears the screen

Letting the User Take a Picture
App Inventor apps can interact with the powerful features of an Android device,
including the camera. To spice up the app, we’ll let the user set the background of
the drawing to a picture she takes with the camera.

1. The Camera component has two key blocks. The Camera.TakePicture block
launches the camera application on the device. The event Camera.AfterPicture
is triggered when the user has finished taking the picture. You’ll add blocks in
the Camera.AfterPicture event handler to set the DrawingCanvas.Background
Image to the just-taken Switch to the My Blocks column and open the
TakePictureButton drawer. Drag the TakePictureButton.Click event handler
into the workspace.

2. From Camera1, drag out Camera1.TakePicture and place it in the
TakePictureButton.click event handler.

3. From Camera1, drag the Camera1.AfterPicture event handler into the
workspace.

4. From DrawingCanvas, drag the set DrawingCanvas.BackgroundImage to
block and place it in the Camera1.AfterPicture event handler.

5. Camera1.AfterPicture has an argument named image, which is the picture just
taken. You can get a reference to it, value image, in the My Definitions palette;
drag it out and plug it into DrawingCanvas.BackgroundImage.

32  Chapter 2:  PaintPot

The blocks should look like Figure 2-15.

Figure 2-15. When the picture is taken, it’s set as the canvas’s background image

Test your app. Try out this behavior by clicking Take Picture on your
phone and taking a picture. The cat should change to the picture
you take, and then you can draw on that picture. (Drawing on
Professor Wolber is a favorite pastime of his students, as exemplified
in Figure 2-16.)

Changing the Dot Size
The size of the dots drawn on the canvas is deter-
mined in the call to DrawingCanvas.DrawCircle
when the radius argument r is set to 5. To change
the thickness, you can put in a different value for r.
To test this, try changing the 5 to a 10 and testing it
out on the phone to see how it looks.

The catch here is that whatever size you set in the
radius argument is the only size the user can use.
What if he wants to change the size of the dots?
Let’s modify the program so that the user, not just
the programmer, can change the dot size. We’ll
change it so that when the user clicks a button
labeled “Big Dots,” the dot size is 8, and when he
clicks a button labeled “Small Dots,” it is 2.

To use different values for the radius argument, the
app needs to know which one we want to apply. We
have to tell it to use a specific value, and it has to
store (or remember) that value somehow so it can
keep using it. When your app needs to remember

Figure 2-16. The PaintPot app with
an “annotated” picture of Professor
Wolber

Adding Behaviors to the Components  33 

something that’s not a property, you can define a variable. A variable is a memory cell;
you can think of it like a bucket in which you can store data that can vary, such as the
current dot size (for more information about variables, see Chapter 15).

Let’s start by defining a variable dotSize:

1. In the Blocks Editor, open the Definitions drawer in the Built-In column. Drag out
a def variable block. Change the text “variable” to “dotSize”.

2. Notice that the def dotSize block has an open slot. This is where you can specify
the initial value for the variable, or the value that it defaults to when the app be-
gins. (This is often referred to as “initializing a variable” in programming terms.)
For this app, initialize the dotSize to 2 by creating a number 2 block (by either
starting to type the number 2 or dragging a number 123 block out of the Math
drawer) and plugging it into def dotSize, as shown in Figure 2-17.

Figure 2-17. Initializing the variable dotSize with a value of 2

Using variables
Next, we want to change the argument of DrawingCanvas.DrawCircle in the
DrawingCanvas.Touched event handler so that it uses the value of dotSize rather
than always using a fixed number. (It may seem like we’ve “fixed” dotSize to the value
2 because we initialized it that way, but you’ll see in a minute how we can change the
value of dotSize and therefore change the size of the dot that gets drawn.)

1. In the Blocks Editor, switch to the My Blocks column and open the My Definitions
drawer. You should see two new blocks: (1) a global dotSize block that pro-
vides the value of the variable, and (2) a set global dotSize to block that sets
the variable to a new value. These blocks were automatically generated for you
when you created the dotSize variable, in the same way that value blocks for the
arguments x and y were created when you added the DrawingCanvas.Touched
event handler earlier.

2. Go to the DrawingCanvas.Touched event handler and drag the number 5
block out of the r slot and place it into the trash. Then replace it with the global
dotSize block from the My Definitions drawer (see Figure 2-18). When the user
touches the canvas, the app will now determine the radius from the variable
dotSize.

34  Chapter 2:  PaintPot

Figure 2-18. Now the size of each circle is dependent on what is stored in the variable dotSize

Changing the values of variables
Here’s where the magic of variables really comes into play—the variable dotSize
allows the user to choose the size of the circle, and your event handler will draw the
circle accordingly. We’ll implement this behavior by programming the SmallButton
.Click and BigButton.Click event handlers:

1. Drag out a SmallButton.Click event handler from the SmallButton drawer of
My Blocks. Then drag out a set global dotSize to block from My Definitions and
plug it into SmallButton.Click. Finally, create a number 2 block and plug it
into the set global dotSize to block.

2. Make a similar event handler for BigButton.Click, but set dotSize to 8. Both
event handlers should now show up in the Blocks Editor, as shown in Figure 2-19.

Note. The “global” in the set global dotSize to refers to the fact that
the variable can be used in all the event handlers of the program
(globally). Some programming languages allow you to define
variables that are “local” to a particular part of the program; App
Inventor currently does not.

Figure 2-19. Clicking the buttons changes the dotSize; successive touches will draw at that size

The Complete App: PaintPot  35 

Test your app. Try clicking the size buttons and then touching the
canvas. Are the circles drawn with different sizes? Are the lines?
The line size shouldn’t change because you programmed dotSize
to only be used in the DrawingCanvas.DrawCircle block. Based
on that, can you think of how you’d change your blocks so users
could change the line size as well? (Note that Canvas has a property
named LineWidth.)

The Complete App: PaintPot
Figure 2-20 illustrates our completed PaintPot app.

Figure 2-20. The final set of blocks for PaintPot

Variations
Here are some variations you can explore:

• The app’s user interface doesn’t provide much information about the current set-
tings (for example, the only way to know the current dot size or color is to draw
something). Modify the app so that these settings are displayed to the user.

• Let the user enter the dot size within a TextBox component. This way, she can
change it to other values besides 2 and 8. For more information on input forms
and the TextBox component, see Chapter 4.

36  Chapter 2:  PaintPot

Summary
Here are some of the ideas we’ve covered in this chapter:

• The Canvas component lets you draw on it. It can also sense touches and drags,
and you can map these events to drawing functions.

• You can use screen arrangement components to organize the layout of compo-
nents instead of just placing them one under the other.

• Some event handlers come with information about the event, such as the
coordinates of where the screen was touched. This information is represented
by arguments. When you drag out an event handler that has arguments, App
Inventor creates value blocks for them and places them in the My Definitions
drawer.

• You create variables by using def variable blocks from the Definitions drawer.
Variables let the app remember information, like dot size, that isn’t stored in a
component property.

• For each variable you define, App Inventor automatically supplies a global value
block that gives the value of the variable, and a set global variable to block
for changing the value of the variable. These blocks can be found in the My
Definitions drawer. To learn more about variables, see Chapter 16.

This chapter showed how the Canvas component can be used for a painting pro-
gram. You can also use it to program animations such as those you’d find in 2D
games. To learn more, check out the Ladybug Chase game in Chapter 5 and the
discussion of animation in Chapter 17.

CHAPTER 3

MoleMash

This chapter shows you how to create
MoleMash, a game inspired by the arcade
classic Whac-A-Mole, in which mechanical
critters pop briefly out of holes, and players
score points by whacking them with a
mallet. MoleMash was created by a member
of the App Inventor team, nominally to test
the sprite functionality (which she imple-
mented), but really because she is a fan of
the game.

When Ellen Spertus joined the App Inventor team at Google, she was eager to add
support for creating games, so she volunteered to implement sprites. The term,
originally reserved for mythological creatures such as fairies and pixies, emerged
in the computing community in the 1970s, where it referred to images capable of
movement on a computer screen (for video games). Ellen first worked with sprites
when she attended a computer camp in the early 1980s and programmed a TI 99/4.
Her work on sprites and MoleMash was motivated by double nostalgia—for both the
computers and games of her childhood.

What You’ll Build
For the MoleMash app shown in Figure 3-1, you’ll implement
the following functionality:

• A mole pops up at random locations on the screen,
moving once every second.

• Touching the mole causes the phone to vibrate, the
display of hits to be incremented (increased by one),
and the mole to move immediately to a new location.

• Touching the screen but missing the mole causes the
display of misses to be incremented.

• Pressing the Reset button resets the counts of hits and
misses.

Figure 3-1. The MoleMash
user interface

38  Chapter 3:  MoleMash

What You’ll Learn
The tutorial covers the following components and concepts:

• The ImageSprite component for touch-sensitive movable images.

• The Canvas component, which acts as a surface on which to place the
ImageSprite.

• The Clock component to move the sprite around.

• The Sound component to produce a vibration when the mole is touched.

• The Button component to start a new game.

• Procedures to implement repeated behavior, such as moving the mole.

• Generating random numbers.

• Using the addition (+) and subtraction (-) blocks.

Getting Started
Connect to the App Inventor website and start a new project. Name it “MoleMash”
and also set the screen’s title to “MoleMash”. Open the Blocks Editor and connect to
the phone.

Download this picture of a mole from this book’s site (http://examples.oreilly
.com/0636920016632/), naming it mole.png and noting where you save it on
your computer. In the Media section of the Component Designer, click Add,
browse to where the file is located on your computer, and upload it to App
Inventor.

Designing the Components
You’ll use these components to make MoleMash:

• A Canvas that serves as a playing field.

• An ImageSprite that displays a picture of a mole and can move around and
sense when the mole is touched.

• A Sound that vibrates when the mole is touched.

• Labels that display “Hits: ”, “Misses: ”, and the actual numbers of hits and misses.

• HorizontalArrangements to correctly position the Labels.

• A Button to reset the numbers of hits and misses to 0.

• A Clock to make the mole move once per second.

Getting Started  39 

Table 3-1 shows the complete list of components.

Table 3-1. The complete list of components for MoleMash

Component type Palette group What you’ll name it Purpose

Canvas Basic Canvas1 The container for ImageSprite.

ImageSprite Animation Mole The user will try to touch this.

Button Basic ResetButton The user will press this to reset the score.

Clock Basic Clock1 Control the mole’s movement.

Sound Media Sound1 Vibrate when the mole is touched.

Label Basic HitsLabel Display “Hits: ”. 

Label Basic HitsCountLabel Display the number of hits.

Horizontal–
Arrangement

Screen Arrangement HorizontalArrangement1 Position HitsLabel next to 
HitsCountLabel.

Label Basic MissesLabel Display “Misses: ”. 

Label Basic MissesCountLabel Display the number of misses.

Horizontal–
Arrangement

Screen Arrangement HorizontalArrangement2 Position MissesLabel next to 
MissesCountLabel.

Placing the Action components
In this section, we will place the components necessary for the game’s action. In the
next section, we will place the components for displaying the score.

1. Drag in a Canvas component, leaving it with the default name Canvas1. Set its
Width property to “Fill parent” so it is as wide as the screen, and set its Height to
300 pixels.

2. Drag in an ImageSprite component from the Animation group on the Palette.
Place it anywhere on Canvas1. Click Rename at the bottom of the Components
list and change its name to “Mole”. Set its Picture property to mole.png, which
you uploaded earlier.

3. Drag in a Button component from the Basic group on the Palette, placing it be-
neath Canvas1. Rename it to “ResetButton” and set its Text property to “Reset”.

4. Drag in a Clock component. It will appear at the bottom of the Viewer in the
“Non-visible components” section.

5. Drag in a Sound component from the Media group on the Palette. It, too, will
appear in the “Non-visible components” section.

40  Chapter 3:  MoleMash

Your screen should now look something like Figure 3-2 (although your mole may be
in a different position).

Figure 3-2. The Component Designer view of the “action” components

Placing the Label components
We will now place components for displaying the user’s score—specifically, the
number of hits and misses.

1. Drag in a HorizontalArrangement from the Screen Arrangement
group, placing it beneath the Button and keeping the default name of
HorizontalArrangement1.

2. Drag two Labels from the Basic group into HorizontalArrangement1.

a. Rename the left Label to “HitsLabel” and set its Text property to “Hits: ”
(making sure to include a space after the colon).

b. Rename the right Label to “HitsCountLabel” and set its Text property to “0”.

3. Drag in a second HorizontalArrangement, placing it beneath Horizontal
Arrangement1.

Adding Behaviors to the Components  41 

4. Drag two Labels into HorizontalArrangement2.

a. Rename the left Label to “MissesLabel” and set its Text property to “Misses: ”
(making sure to include a space after the colon).

b. Rename the right Label to “MissesCountLabel” and set its Text property to “0”.

Your screen should now look like something like Figure 3-3.

Figure 3-3. The Component Designer view of all the MoleMash components

Adding Behaviors to the Components
After creating the preceding components, we can move to the Blocks Editor to im-
plement the program’s behavior. Specifically, we want the mole to move to a random
location on the canvas every second. The user’s goal is to tap on the mole wherever
it appears, and the app will display the number of times the user hits or misses the
mole. (Note: We recommend using your finger, not a mallet!) Pressing the Reset
button resets the number of hits and misses to 0.

42  Chapter 3:  MoleMash

Moving the Mole
In the programs you’ve written thus far, you’ve called built-in procedures, such as
Vibrate in HelloPurr. Wouldn’t it be nice if App Inventor had a procedure that moved
an ImageSprite to a random location on the screen? The bad news: it doesn’t. The
good news: you can create your own procedures! Just like the built-in procedures,
your procedure will show up in a drawer and can be used anywhere in the app.

Specifically, we will create a procedure to move the mole to a random location on the
screen, which we will name MoveMole. We want to call MoveMole at the start of the
game, when the user successfully touches the mole, and once per second.

Creating MoveMole
To understand how to move the mole, we need to look at how Android graphics
work. The canvas (and the screen) can be thought of as a grid with x (horizontal) and
y (vertical) coordinates, where the (x, y) coordinates of the upper-left corner are (0, 0).
The x coordinate increases as you move to the right, and the y coordinate increases
as you move down, as shown in Figure 3-4. The X and Y properties of an ImageSprite
indicate where its upper-left corner should be, so the top-left mole has X and Y values
of 0.

To determine the maximum available X and Y values so that Mole fits on the screen,
we need to make use of the Width and Height properties of Mole and Canvas1.
(The mole’s Width and Height properties are the same as the size of the image you
uploaded. When you created Canvas1, you set its Height to 300 pixels and its Width
to “Fill parent,” which copies the width of its “parent” element, the screen.) If the mole
is 36 pixels wide and the canvas is 200 pixels wide, the x coordinate of the left side
of the mole can be as low as 0 (all the way to the left) or as high as 164 (200 – 36,
or Canvas1.Width – Mole.Width) without the mole extending off the right edge
of the screen. Similarly, the y coordinate of the top of the mole can range from 0 to
Canvas1.Height – Mole.Height.

Figure 3-5 shows the procedure you will create, annotated with descriptive comments
(which you can optionally add to your procedure).

To randomly place the mole, we will want to select an x coordinate in the range from
0 to Canvas1.Width – Mole.Width. Similarly, we will want the y coordinate to be in
the range from 0 to Canvas1.Height – Mole.Height. We can generate a random
number through the built-in procedure random integer, found in the Math drawer.
You will need to change the default “from” parameter from 1 to 0 and replace the “to”
parameters, as shown in Figure 3-5.

Adding Behaviors to the Components  43 

(0, 0)

Ca
nv

as
.H

eig
ht

 (3
00

)

M
ol

e.H
eig

ht
 (4

2)

Canvas1.Width(200)

Mole.Width(36)

(200, 0)

(200-36, 300-42)

(0, 300)

(164, 258)

Figure 3-4. Positions of the mole on the screen, with coordinate, height, and width information; x
coordinates and widths are shown in blue, while y coordinates and heights are shown in orange

Figure 3-5. The MoveMole procedure, which places the mole in a random location

To create the procedure:

1. Click the Definition drawer under the Built-In tab in the Blocks Editor.

2. Drag out the to procedure block (not to procedureWithResult).

3. Click the text “procedure” on the new block and enter “MoveMole” to set the
name of the procedure.

44  Chapter 3:  MoleMash

4. Since we want to move the mole, click the My Blocks tab, click the Mole drawer,
and drag Mole.MoveTo into the procedure, to the right of “do.” Note that we
need to provide x and y coordinates.

5. To specify that the new x coordinate for the mole should be between 0 and
Canvas1.Width – Mole.Width, as discussed earlier:

a. Click the Built-In tab to get to the built-in procedures.

b. Click the Math drawer.

c. Drag out the random integer block, putting the plug (protrusion) on its left
side into the “x” socket on Mole.MoveTo.

d. Change the number 1 on the “from” socket by clicking it and then entering 0.

e. Discard the number 100 by clicking it and pressing your keyboard’s Del or
Delete button, or by dragging it to the trash can.

f. Click the Math drawer and drag a subtraction (-) block into the “to” socket.

g. Click My Blocks to get to your components.

h. Click the Canvas1 drawer and scroll down until you see Canvas1.Width,
which you should drag to the left side of the subtraction operation.

i. Similarly, click the Mole drawer and drag Mole.Width into the right side of
the subtraction block.

6. Follow a similar procedure to specify that the y coordinate should be a random
integer in the range from 0 to Canvas1.Height – Mole.Height.

7. Check your results against Figure 3-5.

To try out your Mole.MoveTo call, right-click the block and choose Do It. (You may
need to restart the app by clicking “Connect to Device” first.) You should see the mole
move on your phone screen, going to a different location each time (except in the
extremely unlikely case that the random-number generator chooses the same place
twice in a row).

Calling MoveMole when the app starts
Now that you’ve written the MoveMole procedure, let’s make use of it. Because it’s so
common for programmers to want something to happen when an app starts, there’s
a block for that very purpose: Screen1.Initialize.

1. Click My Blocks, click the Screen1 drawer, and drag out Screen1.Initialize.

2. Click the My Definitions drawer, where you’ll see a call MoveMole block. (It’s
pretty cool that you’ve created a new block, isn’t it?!) Drag it out, putting it in
Screen1.Initialize, as shown in Figure 3-6.

Adding Behaviors to the Components  45 

Figure 3-6. Calling the MoveMole procedure when the application starts

Calling MoveMole every second
Making the mole move every second will require the Clock component. We left
Clock1’s TimerInterval property at its default value of 1,000 (milliseconds), or 1
second. That means that every second, whatever is specified in a Clock1.Timer block
will take place. Here’s how to set that up:

1. Click My Blocks, click the Clock1 drawer, and drag out Clock1.Timer.

2. Click the My Definitions drawer and drag a call MoveMole block into the Clock1
.Timer block, as shown in Figure 3-7.

Figure 3-7. Calling the MoveMole procedure when the timer goes off (every second)

If that’s too fast or slow for you, you can change Clock1’s TimerInterval property in
the Component Designer to make it move more or less frequently.

Keeping Score
As you may recall, you created two labels, HitsCountsLabel and MissesCountsLabel,
which had initial values of 0. We’d like to increment the numbers in these labels
whenever the user successfully touches the mole (a hit) or taps the screen without
touching the mole (a miss). To do so, we will use the Canvas1.Touched block, which
indicates that the canvas was touched, the x and y coordinates of where it was
touched (which we don’t need to know), and whether a sprite was touched (which
we do need to know). Figure 3-8 shows the code you will create.

46  Chapter 3:  MoleMash

Figure 3-8. Incrementing the number of hits (HitsCountLabel) or misses (MissesCountLabel) when
Canvas1 is touched

Figure 3-8’s translation is whenever the canvas is touched, check whether a sprite
was touched. Since there’s only one sprite in our program, it has to be Mole1. If Mole1
is touched, add one to the number in HitsCountLabel.Text; otherwise, add one to
MissesCountLabel.Text. (The value of touchedSprite is false if no sprite was touched.)

Here’s how to create the blocks:

1. Click My Blocks, click the Canvas1 drawer, and drag out Canvas1.Touched.

2. Click Built-In, click the Control drawer, and drag out ifelse, placing it within
Canvas1.Touched.

3. Click My Blocks, click the My Definitions drawer, and drag out touchedSprite
and place it in ifelse’s test socket.

4. Since we want HitsCountLabel.Text to be incremented if the test succeeded (if
the mole was touched):

a. From the HitsCountLabel drawer, drag out the set HitsCountLabel.Text to
block, putting it to the right of “then-do.”

b. Click Built-In, click the Math drawer, and drag out a plus sign (+), placing it in
the “to” socket.

c. Click My Blocks, click the HitsCountLabel drawer, and drag the
HitsCountLabel .Text block to the left of the plus sign.

d. Click Built-In, click the Math drawer, and drag a number 123 block to the
right of the plus sign. Click 123 and change it to 1.

5. Repeat step 4 for MissesCountLabel in the “else-do” section of the ifelse.

Test your app. You can test this new code on your phone by touch-
ing the canvas, on and off the mole, and watching the score change.

Adding Behaviors to the Components  47 

Resetting the Score
A friend who sees you playing MoleMash will probably want to give it a try too, so
it’s good to have a way to reset the number of hits and misses to 0. Depending on
which tutorials you’ve already worked through, you may be able to figure out how
to do this without reading the following instructions. Consider giving it a try before
reading ahead.

What we need is a ResetButton.Click block that sets the values of HitsCountLabel
.Text and MissesCountLabel.Text to 0. Create the blocks shown in Figure 3-9.

Procedural Abstraction
The.ability.to.name.and.later.call.a.set.of.instructions.like.MoveMole.is.one.of.the.key.tools.in.
computer.science.and.is.referred.to.as.procedural abstraction..It.is.called.“abstraction”.because.
the.caller.of.the.procedure.(who,.in.real-world.projects,.is.likely.to.be.different.from.the.author.
of.the.procedure).only.needs.to.know.what.the.procedure.does.(moves.the.mole),.not.how.it.
does.it.(by.making.two.calls.to.the.random-number.generator)..Without.procedural.abstrac-
tion,.big.computer.programs.would.not.be.possible,.because.they.contain.too.much.code.for.
one.person.to.hold.in.his.head.at.a.time..This.is.analogous.to.the.division.of.labor.in.the.real.
world,.where,.for.example,.different.engineers.design.different.parts.of.a.car,.none.of.them.un-
derstanding.all.of.the.details,.and.the.driver.only.has.to.understand.the.interface.(e.g.,.pressing.
the.brake.pedal.to.stop.the.car),.not.the.implementation.

Some.advantages.of.procedural.abstraction.over.copying.and.pasting.code.are:

•. It.is.easier.to.test.code.if.it.is.neatly.segregated.from.the.rest.of.the.program.

•. If.there’s.a.mistake.in.the.code,.it.only.needs.to.be.fixed.in.one.place.

•. To.change.the.implementation,.such.as.making.sure.that.the.mole.doesn’t.move.some-
where.that.it.appeared.recently,.you.only.have.to.modify.the.code.in.one.place.

•. Procedures.can.be.collected.into.a.library.and.used.in.different.programs..(Unfortunately,.
this.functionality.is.not.currently.supported.in.App.Inventor.)

•. Breaking.code.into.pieces.helps.you.think.about.and.implement.the.application.(“divide.
and.conquer”).

•. Choosing. good. names. for. procedures. helps. document. the. code,. making. it. easier. for.
someone.else.(or.you,.a.month.later).to.read.

In.later.chapters,.you.will.learn.ways.of.making.procedures.even.more.powerful:.adding.argu-
ments,.providing.return.values,.and.having.procedures.call.themselves..For.an.overview,.see.
Chapter.21.

48  Chapter 3:  MoleMash

Figure 3-9. Resetting the number of hits (HitsCountLabel) and Misses (MissesCountLabel) when the
Reset button is pressed

At this point, you probably don’t need step-by-step instructions for creating a button
click event handler with text labels, but here’s a tip to help speed up the process: in-
stead of getting your number from the Math drawer, just type 0, and the block should
be created for you. (These kinds of keyboard shortcuts exist for other blocks, too.)

Test your app. Try hitting and missing the mole and then pressing
the Reset button.

Adding Behavior When the Mole Is Touched
We said earlier that we want the phone to vibrate when the mole is touched, which
we can do with the Sound1.Vibrate block, as shown in Figure 3-10. Note that the
parameter names x1 and y1 are used in Mole.Touched because x and y have already
been used in Canvas1.Touched.

Figure 3-10. Making the phone vibrate briefly (for 100 milliseconds) when the mole is touched

Test your app. See how the vibration works when you actually
touch the mole. If the vibration is too long or too short for your taste,
change the number of milliseconds in Sound1.Vibrate.

The Complete App: MoleMash  49 

The Complete App: MoleMash
Figure 3-11 illustrates the blocks for the complete MoleMash app.

Figure 3-11. The complete MoleMash application

Variations
Here are some ideas for additions to MoleMash:

• Add buttons to let the user make the mole move faster or slower.

• Add a label to keep track of and display the number of times the mole has ap-
peared (moved).

• Add a second ImageSprite with a picture of something that the user should not
hit, such as a flower. If the user touches it, penalize him by reducing his score or
ending the game.

• Instead of using a picture of a mole, let the user select a picture with the
ContactPicker component.

50  Chapter 3:  MoleMash

Summary
In this chapter, we’ve covered a number of techniques useful for apps in general and
games in particular:

• The Canvas component makes use of an x-y coordinate system, where x rep-
resents the horizontal direction (from 0 at the left to Canvas.Width–1 at the
right) and y the vertical direction (from 0 at the top to Canvas.Height–1 at the
bottom). The height and width of an ImageSprite can be subtracted from the
height and width of a Canvas to make sure the sprite fits entirely on the Canvas.

• You can take advantage of the phone’s touchscreen through the Canvas and
ImageSprite components’ Touched methods.

• You can create real-time applications that react not just to user input but also in
response to the phone’s internal timer. Specifically, the Clock.Timer block runs
at the frequency specified in the Clock.Interval property and can be used to
move ImageSprite (or other) components.

• Labels can be used to display scores, which go up (or down) in response to the
player’s actions.

• Tactile feedback can be provided to users through the Sound.Vibrate method,
which makes the phone vibrate for the specified number of milliseconds.

• Instead of just using the built-in methods, you can create procedures to name
a set of blocks (MoveMole) that can be called just like the built-in ones. This is
called procedural abstraction and is a key idea in computer science, enabling
code reuse and making complex applications possible.

• You can generate unpredictable behavior with the random integer block in the
Math drawer, making a game different every time it is played.

You’ll learn more techniques for games, including detecting collisions between moving
ImageSprite components, in Chapter 5 (Ladybug Chase).

CHAPTER 4

No Texting While Driving

This chapter walks you through the develop-
ment of No Texting While Driving, an app that
autoresponds to text messages you receive
while you’re driving. The app, first created with
App Inventor by a beginning computer science
student, is similar to a now-mass-produced app
developed by State Farm Insurance. It is a prime
example of how App Inventor provides access
to some of the great features of the Android

phone, including SMS text processing, database management, text-to-speech, and the
location sensor.

In January 2010, the National Safety Council (NSC)
announced the results of a study that found that
at least 28 percent of all traffic accidents—close to
1.6 million crashes every year—are caused by
drivers using cell phones, and at least 200,000 of
those accidents occurred while drivers were
texting.1 As a result, many states have banned
drivers from using cell phones altogether.

Daniel Finnegan, a student in the Fall 2010 session
of the University of San Francisco App Inventor
programming class, came up with a great app idea
to help with the driving and texting epidemic.
The app he created, which is shown in Figure 4-1,
responds automatically (and hands-free) to any
text with a message such as “I’m driving right now,
I’ll contact you shortly.”

1		http://www.nsc.org/pages/nscestimates16millioncrashescausedbydriversusingcellphonesandtexting.aspx

Figure 4-1. The No Texting While
Driving app

52  Chapter 4:  No Texting While Driving

Some in-class brainstorming led to a few additional features that were developed for
a tutorial posted on the App Inventor site:

The user can change the response for different situations
For example, if you’re going into a meeting or a movie instead of driving, the
response can be modified accordingly.

The app speaks the text aloud
Even if you know the app will autorespond, the jingle of incoming texts can kill
you with curiosity.

The response message can contain your current location
If your partner is at home making dinner, he or she would probably like to know
how much longer your commute will last, without endangering you by having
you answer the text.

Some weeks after the app was posted on the App Inventor site, State Farm
Insurance created an Android app called “On the Move,” which has similar func-
tionality to No Texting While Driving.2 The service is free to anyone, as part of State
Farm’s updated Pocket Agent→ for Android™ application, which the company
announced in a YouTube video that can be found here: http://www.youtube.com/
watch?v=3xtjzO0-Hfw.

We don’t know if Daniel’s app or the tutorial on the App Inventor site influenced
“On the Move,” but it’s interesting to consider the possibility that an app created in a
beginning programming course (by a creative writing student, no less!) might have
inspired this mass-produced piece of software, or at least contributed to the ecosys-
tem that brought it about. It certainly demonstrates how App Inventor has lowered
the barrier of entry so that anyone with a good idea can quickly and inexpensively
turn his idea into a tangible, interactive app.

What You’ll Learn
This is a more complex app than those in the previous chapters, so you’ll build it one
piece of functionality at a time, starting with the autoresponse message. You’ll learn
about:

• The Texting component for sending texts and processing received texts.

• An input form for submitting the custom response message.

• The TinyDB database component for saving the customized message even after
the app is closed.

2		http://www.statefarm.com/aboutus/newsroom/20100819.asp

Getting Started  53 

• The Screen.Initialize event for loading the custom response when the app
launches.

• The Text-to-Speech component for speaking the texts aloud.

• The LocationSensor component for reporting the driver’s current location.

Getting Started
For this app to work, you need a text-to-speech module, Text-To-Speech Extended,
on your phone. This module is included in Android version 2 or higher, but if you
are running an Android 1.x operating system, you’ll need to download it from the
Android Market. On your phone:

1. Open the Market app.

2. Search for TTS.

3. Select the app Text-To-Speech Extended to install.

Once the Text-To-Speech module is installed, open it to test its features. When it
opens, set the default language as desired. Then select “Listen to Preview.” If you
don’t hear anything, make sure the volume on your phone is turned up. You can
also change the way the voice sounds by changing the setting for the TTS Default
Engine property.

After you’ve set up the Text-To-Speech module to your liking, connect to the App
Inventor website and start a new project. Name it “NoTextingWhileDriving” (project
names can’t have spaces) and set the screen’s title to “No Texting While Driving”.
Open the Blocks Editor and connect to the phone.

Designing the Components
The user interface for the app is relatively simple: it has a label that displays the auto-
mated response, along with a text box and a button for submitting a change. You’ll
also need to drag in a Texting component, a TinyDB component, a TextToSpeech
component, and a LocationSensor component, all of which will appear in the “Non-
visible components” area. You can see how this should look in the snapshot of the
Component Designer shown in Figure 4-2.

54  Chapter 4:  No Texting While Driving

Figure 4-2. The No Texting While Driving app in the Component Designer

You can build the user interface shown in Figure 4-2 by dragging out the components
listed in Table 4-1.

Set the properties of the components in the following way:

• Set the Text of PromptLabel to “The text below will be sent in response to all
SMS texts received while this app is running.”

• Set the Text of ResponseLabel to “I’m driving right now, I’ll contact you shortly.”
Check its boldness property.

• Set the Text of NewResponseTextbox to “”. (This leaves the text box blank for the
user’s input.)

• Set the Hint of NewResponseTextbox to “Enter new response text.”

• Set the Text of SubmitResponseButton to “Modify Response.”

Adding Behaviors to the Components
You’ll start by programming the basic text autoresponse behavior, and then succes-
sively add more functionality.

Getting Started  55 

Table 4-1. All the components for the No Texting While Driving app

Component type Palette group What you’ll name it Purpose

Label Basic PromptLabel Let the user know how the app works.

Label Basic ResponseLabel The response that will be sent back to the 
sender of original text.

TextBox Basic NewResponseTextbox The user will enter the custom response here.

Button Basic SubmitResponseButton The user clicks this to submit response.

Texting Social Texting1 Process the texts.

TinyDB Basic TinyDB1 Store the response in the database.

TextToSpeech Other stuff TextToSpeech1 Speak the texts aloud.

LocationSensor Sensors LocationSensor1 Sense where the phone is.

Programming an autoresponse
For the autoresponse behavior, you’ll use App Inventor’s Texting component.
You can think of this component as a little person inside your phone that knows
how to read and write texts. For reading texts, the component provides a Texting
.MessageReceived event block. You can drag this block out and place blocks inside
it to show what should happen when a text is received. In the case of this app, we
want to automatically send back a prewritten response text.

To program the response text, you’ll place a Texting1.SendMessage block within
the Texting1.MessageReceived block. Texting1.SendMessage actually sends the
text—so you’ll first need to tell the component what message to send, and who to
send it to, before calling Texting1.SendMessage. Table 4-2 lists all the blocks you’ll
need for this autoresponse behavior, and Figure 4-3 shows how they should look in
the Blocks Editor.

Table 4-2. The blocks for sending an autoresponse

Block type Drawer Purpose

Texting1.MessageReceived Texting The event handler that is triggered when the phone 
receives a text.

set Texting1.PhoneNumber to Texting Set the PhoneNumber property before sending.

value number My Definitions The phone number of the person who sent the text.

set Texting1.Message to Texting Set the Message property before sending.

ResponseLabel.Text ResponseLabel The message the user has entered.

Texting1.SendMessage Texting Send the message.

56  Chapter 4:  No Texting While Driving

Figure 4-3. Responding to an incoming text

How the blocks work
When the phone receives a text message, the Texting1.MessageReceived event is
triggered. As shown in Figure 4-3, the phone number of the sender is in the argu-
ment number, and the message received is in the argument messageText. For the
autoresponse, the app needs to send a text message to the sender. To send the text,
you first need to set the two key properties of the Texting component: PhoneNumber
and Message.Texting.PhoneNumber is set to the number of the sender, and
Texting.Message is set to the text you typed into ResponseLabel: “I’m driving right
now, I’ll contact you shortly.” Once these are set, the app calls Texting.SendMessage
to actually send the response.

You may be wondering about the yellow boxes that we have in the Blocks Editor.
Those are comments, and you can add them by right-clicking a block and selecting
Add Comment. Once you add a comment, you can show or hide it by clicking the
black question mark that appears. You don’t have to add comments in your app—
we’ve simply included them here to help describe each block and what it does.

Most people use comments to document how they are building their app; comments
explain how the program works, but they won’t make the app behave differently.
Comments are important, both for you as you build the app and modify it later, and
for other people who might customize it. The one thing everyone agrees on about
software is that it changes and transforms often. For this reason, commenting code is
very important in software engineering, and especially so with open source software
like App Inventor.

Test your app. You’ll need a second phone to test this behavior. If
you don’t have one, you can register with Google Voice or a similar
service and send texts from that service to your phone.

From the second phone, send a text to the phone running the app.
Does the second phone receive the response text?

Getting Started  57 

Entering a Custom Response
Next, let’s add blocks so the user can enter her own custom response. In the
Component Designer, you added a TextBox component named NewResponseTextbox;
this is where the user will enter the custom response. When the user clicks on the
SubmitResponseButton, you need to copy her entry (NewResponseTextbox) into the
ResponseLabel, which is used to respond to texts. Table 4-3 lists the blocks you’ll need
for transferring a newly entered response into the ResponseLabel.

Table 4-3. Blocks for displaying the custom response

Block type Drawer Purpose

SubmitResponseButton
.Click

SubmitResponseButton The user clicks this button to submit a new response 
message.

set ResponseLabel.Text to ResponseLabel Move (set) the newly input value to this label.

NewResponseTextbox.Text NewResponseTextbox The user has entered the new response here.

How the blocks work
Think of how a typical input form works: you first enter something in a text box, and
then click a submit button to tell the system to process it. The input form for this app
is no different. Figure 4-4 shows how the blocks are programmed so that when the
user clicks the SubmitResponseButton, the SubmitResponseButton.Click event is
triggered.

Figure 4-4. Setting the response to the user’s entry

The event handler in this case copies (or sets, in programming terms) what the
user has entered in NewResponseTextbox into the ResponseLabel. Recall that
ResponseLabel holds the message that will be sent out in the autoresponse, so you
want to be sure to place the newly entered custom message there.

Test your app. Enter a custom response and submit it, and then use
the second phone to send another text to the phone running the
app. Was the custom response sent?

58  Chapter 4:  No Texting While Driving

Storing the Custom Response in a Database
You’ve built a great app already, with one catch: if the user enters a custom response,
and then closes the app and relaunches it, the custom response will not appear
(instead, the default one will). This behavior is not what your users will expect; they’ll
want to see the custom response when they restart the app. To make this happen,
you need to store that custom response persistently.

You might think that placing data in the ResponseLabel.Text property is technically
“storing” it, but the issue is that data stored in component properties is transient data.
Transient data is like your short-term memory; the phone “forgets” it as soon as an
app closes. If you want your app to remember something persistently, you have to
transfer it from short-term memory (a component property or variable) to long-term
memory (a database).

To store data persistently, you’ll use the TinyDB component, which stores data in
a database that’s already on the Android device. TinyDB provides two functions:
StoreValue and GetValue. The former allows the app to store information in the
device’s database, while the latter lets the app retrieve information that has already
been stored.

For many apps, you’ll use the following scheme:

1. Store data to the database each time the user submits a new value.

2. When the app launches, load the data from the database into a variable or
property.

You’ll start by modifying the SubmitResponseButton.Click event handler so that it
stores the data persistently, using the blocks listed in Table 4-4.

Table 4-4. Blocks for storing the custom response with TinyDB

Block type Drawer Purpose

TinyDB1.StoreValue TinyDB1 Store the custom message in the phone’s database.

text ("responseMessage") Text Use this as the tag for the data.

ResponseLabel.Text ResponseLabel The response message is now here.

How the blocks work
This app uses TinyDB to take the text it just put in ResponseLabel and store it in the
database. As shown in Figure 4-5, when you store something in the database, you
provide a tag with it; in this case, the tag is “responseMessage.” Think of the tag as
the name for the data’s spot in the database; it uniquely identifies the data you are
storing. As you’ll see in the next section, you’ll use the same tag (“responseMessage”)
when you load the data back in from the database.

Getting Started  59 

Figure 4-5. Storing the custom response persistently

Retrieving the Custom Response When the App Opens
The reason for storing the custom response in the database is so it can be loaded
back into the app the next time the user opens it. App Inventor provides a special
event block that is triggered when the app opens: Screen1.Initialize (if you com-
pleted MoleMash in Chapter 3, you’ve seen this before). If you drag this event block
out and place blocks in it, those blocks will be executed right when the app launches.

For this app, your Screen1.Initialize event handler should check to see if a custom
response has been put in the database. If so, the custom response should be loaded
in using the TinyDB.GetValue function. The blocks you’ll need for this are shown in
Table 4-5.

Table 4-5. Blocks for loading the data back in when the app is opened

Block type Drawer Purpose

def variable ("response") Definition (don’t forget: this is differ-
ent than the My Definitions drawer)

A temporary variable to hold the retrieved 
data.

text ("") Text The initial value for the variable can be 
anything.

Screen1.Initialize Screen1 This is triggered when the app begins.

set global response to My Definitions Set this variable to the value retrieved from 
the database.

TinyDB1.GetValue TinyDB1 Get the stored response text from the 
database.

text ("responseMessage") Text Plug this into the tag slot of TinyDB
.GetValue, making sure the text is the 
same as that used in TinyDB.Store
Value earlier.

if Control Ask if the retrieved value has some text.

> Math Check if the length of the retrieved value is 
greater than (>) 0.

60  Chapter 4:  No Texting While Driving

Table 4-5. Blocks for loading the data back in when the app is opened

Block type Drawer Purpose

length text Text Check if the length of the retrieved value is 
greater than 0.

global response My Definitions This variable holds the value retrieved from 
TinyDB1.GetValue.

number (0) Math Compare this with the length of the response.

set ResponseLabel.Text to ResponseLabel If we retrieved something, place it in 
ResponseLabel. 

global response My Definitions This variable holds the value retrieved from 
TinyDB1.GetValue.

How the blocks work
The blocks are shown in Figure 4-6. To understand them, you must envision a user
opening the app for the first time, entering a custom response, and opening the app
subsequent times. The first time the user opens the app, there won’t be any custom
response in the database to load, so you want to leave the default response in the
ResponseLabel. On successive launches, you want to load the previously stored
custom response from the database and place it in the ResponseLabel.

Figure 4-6. Loading the custom response from the database upon app initialization

When the app begins, the Screen1.Initialize event is triggered. The app calls
the TinyDB1.GetValue with a tag of “responseMessage,” the same tag you used
when you stored the user’s custom response entry earlier. The retrieved value is
placed in the variable response so that it can be checked before we place it as the
ResponseLabel. Can you think of why you’d want to check what you get back from
the database before displaying it as the custom message to the user?

(continued)

Getting Started  61 

TinyDB returns empty text if there is no data for a particular tag in the database.
There won’t be data the first time the app is launched; this will be the case until
the user enters a custom response. Because the variable response now holds the
returned value, we can use the if block to check if the length of what was returned
by the database is greater than 0. If the length of the value contained in response
is greater than 0, the app knows that TinyDB did return something, and the re-
trieved value can be placed into the ResponseLabel. If the length isn’t greater than
0, the app knows there is no previously stored response, so it doesn’t modify the
ResponseLabel (leaving the default response in it).

Test your app. You cannot test this behavior through live testing,
as the database gets emptied each time you “Connect to Device” to
restart the app.

Instead, select “Package for Phone”→Show Barcode, and then
download the app to your phone by scanning the barcode.
Once the app is installed, enter a new response message in the
NewResponseTextbox and click the SubmitResponseButton. Then
close the app and restart it. Does your custom message appear?

Speaking the Incoming Texts Aloud
In this section, you’ll modify the app so that when you receive a text, the sender’s
phone number, along with the message, is spoken aloud. The idea here is that when
you’re driving and hear a text come in, you might be tempted to check the text even
if you know the app is sending an autoresponse. With text-to-speech, you can hear
the incoming texts and keep your hands on the wheel.

Android devices provide text-to-speech capabilities and App Inventor provides a
component, TextToSpeech, that will speak any text you give it. (Note that here
“text” is meant in the general sense of the word—a sequence of letters, digits, and
punctuation—not an SMS text.)

In the “Getting Started” section of this app, we asked you to download a text-to-
speech module from the Android Market. If you didn’t do so then, you’ll need to
now. Once that module is installed and configured as desired, you can use the
TextToSpeech component within App Inventor.

The TextToSpeech component is very simple to use—you just call its Speak function
and plug in the text you want spoken into its message slot. For instance, the function
shown in Figure 4-7 would say, “Hello World.”

62  Chapter 4:  No Texting While Driving

Figure 4-7. Blocks for speaking “Hello World” aloud

For the No Texting While Driving app, you’ll need to provide a more complicated
message to be spoken, one that includes both the text received and the phone num-
ber of the person who sent it. Instead of plugging in a static text object like the “Hello
World” text block, you’ll plug in a make text block. An incredibly useful function, make
text allows you to combine separate pieces of text (or numbers and other characters)
into a single text object.

You’ll need to make the call to TextToSpeech.Speak within the Texting.Message
Received event handler you programmed earlier. The blocks you programmed previ-
ously handle this event by setting the PhoneNumber and Message properties of the
Texting component appropriately and then sending the response text. You’ll extend
that event handler by adding the blocks listed in Table 4-6.

Table 4-6. Blocks for speaking the incoming text aloud

Block type Drawer Purpose

TextToSpeech1.Speak TextToSpeech1 Speak the message received out loud.

make text Text Build the words that will be spoken.

text ("SMS text received from") Text The first words spoken.

value number My Definitions The number from which the original text was received.

text (".The message is") Text Put a period in after the phone number and then say, 
“The message is.”

value messageText My Definitions The original message received.

How the blocks work
After the response is sent, the TextToSpeech1.Speak function is called, as shown at
the bottom of Figure 4-8. You can plug any text object into the message slot of the
TextToSpeech1.Speak function. In this case, make text is used to build the words to
be spoken—it concatenates (or adds) together the text “SMS text received from” and
the phone number from which the message was received (value number), plus the
text “.The message is,” and finally the message received (value messageText). So,
if the text “hello” was sent from the number “111–2222,” the phone would say, “SMS
text received from 111–2222. The message is hello.”

Getting Started  63 

Figure 4-8. Speaking the incoming text aloud

Test your app. You’ll need a second phone to test your app. From
the second phone, send a text to the phone running the app. Does
the phone running the app speak the text aloud? Does it still send an
automated response?

Adding Location Information to the Response
Apps like Facebook’s Place and Google’s Latitude use GPS information to help people
track one another’s location. There are major privacy concerns with such apps, one
reason being that location tracking kindles people’s fear of a “Big Brother” apparatus
that a totalitarian government might set up to track its citizens’ whereabouts. But
apps that use location information can be quite useful—think of a lost child, or hikers
who’ve gotten off the trail in the woods.

In the No Texting While Driving app, location tracking can be used to convey a bit
more information in response to incoming texts. Instead of just “I’m driving,” the
response message can be something like “I’m driving and I’m at 3413 Cherry Avenue.”
For someone awaiting the arrival of a friend or family member, this extra information
can be helpful.

App Inventor provides the LocationSensor component for interfacing with the
phone’s GPS (or geographical positioning system). Besides latitude and longitude in-
formation, the LocationSensor can also tap into Google Maps to provide the driver’s
current street address.

64  Chapter 4:  No Texting While Driving

It’s important to note that LocationSensor doesn’t always have a reading. For this
reason, you need to take care to use the component properly. Specifically, your
app should respond to the LocationSensor.LocationChanged event handler. A
LocationChanged event occurs when the phone’s location sensor first gets a read-
ing, and when the phone is moved to generate a new reading. Using the blocks listed
in Table 4-7, our scheme will respond to the LocationChanged event by placing the
current address in a variable we’ll name lastKnownLocation. Later, we’ll change the
response message to incorporate the address we get from this variable.

Table 4-7. Blocks to set up the location sensor

Block type Drawer Purpose

def variable ("lastKnownLocation") Definitions Create a variable to hold the last read address.

text ("unknown") Text Set the default value in case the phone’s sensor is 
not working.

LocationSensor1.LocationChanged LocationSensor1 This is triggered on the first location reading and 
every location change.

set global lastKnownLocation to My Definitions Set this variable to be used later.

LocationSensor1.CurrentAddress LocationSensor1 This is a street address such as “2222 Willard Street, 
Atlanta, Georgia.”

How the blocks work
The LocationSensor1.LocationChanged event is triggered the first time the sen-
sor gets a location reading and when the device is moved so that a new reading is
generated. Since you eventually want to send a street address as part of the response
message, Figure 4-9 shows how the LocationSensor1.CurrentAddress function is
called to get that information and store it in the lastKnownLocation variable. Behind
the scenes, this function makes a call to Google Maps (via an API, something you’ll
learn about in Chapter 24) to determine the closest street address for the latitude
and longitude that the sensor reads.

Figure 4-9. Recording the phone’s location in a variable each time the GPS location is sensed

Getting Started  65 

Note that with these blocks, you’ve finished only half of the job. The app still needs
to incorporate the location information into the autoresponse text that will be sent
back to the sender. Let’s do that next.

Sending the Location As Part of the Response
Using the variable lastKnownLocation, you can modify the Texting1.Message
Received event handler to add location information to the response. Table 4-8 lists
the blocks you’ll need for this.

Table 4-8. Blocks to display location information in the autoresponse

Block type Drawer Purpose

make text Text If there is a location reading, build a compound text object.

ResponseLabel.Text MessageTextBox This is the (custom) message in the text box.

text ("My last known location is:") Text This will be spoken after the custom message (note the 
leading space).

global lastKnownLocation LocationSensor This is an address such as “2222 Willard Street, Atlanta, 
Georgia.”

How the blocks work
This behavior works in concert with the LocationSensor1.LocationChanged event
and the variable lastKnownLocation. As you can see in Figure 4-10, instead of directly
sending a message containing the text in ResponseLabel.Text, the app first builds a
message using make text. It combines the response text in ResponseLabel.Text with
the text “My last known location is:” followed by the variable lastKnownLocation.

Figure 4-10. Including location information in the response text

66  Chapter 4:  No Texting While Driving

The default value of lastKnownLocation is “unknown,” so if the location sensor
hasn’t yet generated a reading, the second part of the response message will contain
the text “My last known location is: unknown.” If there has been a reading, the second
part of the response will be something like “My last known location is: 876 Willard
Street, San Francisco, CA 95422.”

Test your app. From the second phone, send a text to the phone
running the app. Does the second phone receive the response text
with the location information? If it doesn’t, make sure you’ve turned
GPS on in the first phone’s Location settings.

The Complete App: No Texting While Driving
Figure 4-11 shows the final block configuration for No Texting While Driving.

Variations
Once you get the app working, you might want to explore some variations. For
example:

• Write a version that lets the user define custom responses for particular incom-
ing phone numbers. You’ll need to add conditional (if) blocks that check for
those numbers. For more information on conditional blocks, see Chapter 18.

• Write a version that sends custom responses based on whether the user is within
certain latitude/longitude boundaries. So, if the app determines that you’re in
room 222, it will send back “Bob is in room 222 and can’t text right now.” For
more information on the LocationSensor and determining boundaries, see
Chapter 23.

• Write a version that sounds an alarm when a text is received from a number in a
“notify” list. For help working with lists, see Chapter 19.

Variations  67 

Figure 4-11. The complete No Texting While Driving app (with all comments showing)

68  Chapter 4:  No Texting While Driving

Summary
Here are some of the concepts we’ve covered in this tutorial:

• The Texting component can be used to both send text messages and process the
ones that are received. Before calling Texting.SendMessage, you should set the
PhoneNumber and Message properties of the Texting component. To respond to
an incoming text, program the Texting.MessageReceived handler.

• The TinyDB component is used to store information persistently—in the phone’s
database—so that the data can be reloaded each time the app is opened. For
more information on TinyDB, see Chapter 22.

• The TextToSpeech component takes any text object and speaks it aloud.

• make text is used to piece together (or concatenate) separate text items into a
single text object.

• The LocationSensor component can report the phone’s latitude, longitude, and
current street address. To ensure that it has a reading, you should access its data
within the LocationSensor.LocationChanged event handler, which is triggered
the first time a reading is made and upon every change thereafter. For more
information on the LocationSensor, see Chapter 23.

If you’re interested in exploring SMS-processing apps further, check out the
Broadcast Hub app in Chapter 11.

CHAPTER 5

Ladybug Chase

Games are among the most exciting mobile phone apps,
both to play and to create. The recent smash hit Angry
Birds was downloaded 50 million times in its first year
and is played more than a million hours every day,
according to Rovio, its developer. (There is even talk of
making it into a feature film!) While we can’t guarantee
that kind of success, we can help you create your own
games with App Inventor, including this one involving a
ladybug eating aphids while avoiding a frog.

What You’ll Build
With the Ladybug Chase app shown in Figure 5-1, the
user can:

• Control a ladybug by tilting the phone.

• View an energy-level bar on the screen, which
decreases over time, leading to the ladybug’s
starvation.

• Make the ladybug chase and eat aphids to gain
energy and prevent starvation.

• Help the ladybug avoid a frog that wants to eat it.

What You’ll Learn
You should work through the MoleMash app in Chapter 3 before delving into this
chapter, as it assumes you know about procedure creation, random-number genera-
tion, the ifelse block, and the ImageSprite, Canvas, Sound, and Clock components.

In addition to reviewing material from MoleMash and other previous chapters, this
chapter introduces:

Figure 5-1. The Ladybug Chase
game in the Designer

70  Chapter 5:  Ladybug Chase

• Using multiple ImageSprite components and detecting collisions between
them.

• Detecting phone tilts with an OrientationSensor component and using it to
control an ImageSprite.

• Changing the picture displayed for an ImageSprite.

• Drawing lines on a Canvas component.

• Controlling multiple events with a Clock component.

• Using variables to keep track of numbers (the ladybug’s energy level).

• Creating and using procedures with parameters.

• Using the and block.

Designing the Components
This application will have a Canvas that provides a playing field for three ImageSprite
components: one for the ladybug, one for the aphid, and one for the frog, which will
also require a Sound component for its “ribbit.” The OrientationSensor will be used
to measure the phone’s tilt to move the ladybug, and a Clock will be used to change
the aphid’s direction. There will be a second Canvas that displays the ladybug’s energy
level. A Reset button will restart the game if the ladybug starves or is eaten. Table 5-1
provides a complete list of the components in this app.

Table 5-1. All of the components for the Ladybug Chase game

Component type Palette group What you’ll name it Purpose

Canvas Basic FieldCanvas Playing field.

ImageSprite Animation Ladybug User-controlled player.

OrientationSensor Sensors OrientationSensor1 Detect the phone’s tilt to control the ladybug.

Clock Basic Clock1 Determines when to change the Image
Sprites’ headings

ImageSprite Animation Aphid The ladybug’s prey.

ImageSprite Animation Frog The ladybug’s predator.

Canvas Basic EnergyCanvas Display the ladybug’s energy level.

Button Basic RestartButton Restart the game.

Sound Media Sound1 “Ribbit” when the frog eats the ladybug.

Getting Started  71 

Getting Started
Download the images of the ladybug, aphid, and frog from the book’s website
(http://examples.oreilly.com/0636920016632/). You’ll also need to download the sound
file for the frog’s ribbit.

Connect to the App Inventor website and start a new project. Name it “LadybugChase”
and also set the screen’s title to “Ladybug Chase”. Open the Blocks Editor and connect
to the phone. Add the images you found or created, as well as the sound file, to the
Media panel.

If you will be using a phone, you’ll need to disable autorotation of the screen, which
changes the display direction when you turn the phone. On most phones, you do
this by going to the home screen, pressing the menu button, selecting Settings,
selecting Display, and unchecking the box labeled “Auto-rotate screen.”

Animating the Ladybug
In this “first-person chewer” game, the user will be represented by a ladybug, whose
movement will be controlled by the phone’s tilt. This brings the user into the game in
a different way from MoleMash, in which the user was outside the phone, reaching in.

Adding the Components
While previous chapters have had you create all the components at once, that’s not
how developers typically work. Instead, it’s more common to create one part of a
program at a time, test it, and then move on to the next part of the program. In this
section, we will create the ladybug and control its movement.

• Create a Canvas in the Component Designer, name it FieldCanvas, and set its
Width to “Fill parent” and its Height to 300 pixels.

• Place an ImageSprite on the Canvas, renaming it Ladybug and setting its
Picture property to the (live) ladybug image. Don’t worry about the values of
the X and Y properties, as those will depend on where on the canvas you placed
the ImageSprite.

As you may have noticed, ImageSprites also have Interval, Heading, and Speed
properties, which we will use in this program:

• The Interval property, which you can set to 10 (milliseconds) for this game,
specifies how often the ImageSprite should move itself (as opposed to being
moved by the MoveTo procedure, which you used for MoleMash).

72  Chapter 5:  Ladybug Chase

• The Heading property indicates the direction in which the ImageSprite should
move, in degrees. For example, 0 means due right, 90 means straight up, 180
means due left, and so on. Leave the Heading as-is right now; we will change it
in the Blocks Editor.

• The Speed property specifies how many pixels the ImageSprite should move
whenever its Interval (10 milliseconds) passes. We will also set the Speed prop-
erty in the Blocks Editor.

For more details on image sprites, see Chapter 17.

The ladybug’s movement will be controlled by an OrientationSensor, which detects
how the phone is tilted. We want use the Clock component to check the phone’s
orientation every 10 milliseconds (100 times per second) and change the ladybug’s
Heading (direction) accordingly. We will set this up in the Blocks Editor as follows:

1. Add an OrientationSensor, which will appear in the “Non-visible components”
section.

2. Add a Clock, which will also appear in the “Non-visible components” section,
and set its TimerInterval to 10 milliseconds. Check what you’ve added against
Figure 5-2.

Adding the Behavior
Moving to the Blocks Editor, create the procedure UpdateLadybug and a Clock1
.Timer block, as shown in Figure 5-3. Try typing the names of some of the blocks
(such as “Clock1.Timer”) instead of dragging them out of the drawers. (Note that
the operation applied to the number 100 is multiplication, indicated by an aster-
isk, which may be hard to see in the figure.) You do not need to create the yellow
comment callouts, although you can by right-clicking a block and selecting Add
Comment.

The UpdateLadybug procedure makes use of two of the OrientationSensor’s most
useful properties:

• Angle, which indicates the direction in which the phone is tilted (in degrees).

• Magnitude, which indicates the amount of tilt, ranging from 0 (no tilt) to 1
(maximum tilt).

Multiplying the Magnitude by 100 tells the ladybug that it should move between
0 and 100 pixels in the specified Heading (direction) whenever its TimerInterval,
which you previously set to 10 milliseconds in the Component Designer, passes.

Although you can try this out on the connected phone, the ladybug’s movement
might be both slower and jerkier than if you package and download the app to the
phone. If, after doing that, you find the ladybug’s movement too sluggish, increase
the speed multiplier. If the ladybug seems too jerky, decrease it.

Animating the Ladybug  73 

Figure 5-2. Setting up the user interface in the Component Designer for animating the ladybug

Figure 5-3. Changing the ladybug’s heading and speed every 10 milliseconds

74  Chapter 5:  Ladybug Chase

Displaying the Energy Level
We will display the ladybug’s energy level with a red bar in a second canvas. The line
will be 1 pixel high, and its width will be the same number of pixels as the ladybug’s
energy, which ranges from 200 (well fed) to 0 (dead).

Adding a Component
In the Designer, create a new Canvas, placing it beneath FieldCanvas and naming it
EnergyCanvas. Set its Width property to “Fill parent” and its Height to 1 pixel.

Creating a Variable: Energy
In the Blocks Editor, you will need to create a variable energy with an initial value
of 200 to keep track of the ladybug’s energy level. (As you may recall, we first used a
variable, dotSize, in Chapter 2’s PaintPot app.) Here’s how to do it:

1. In the Blocks Editor, in the Built-In column, open the Definitions drawer. Drag out
a def variable block. Change the text “variable” to “energy”.

2. If there is a block in the socket on the right side of def energy, delete it by se-
lecting it and either pressing the Delete key or dragging it to the trash can.

3. Create a number 200 block (by either starting to type the number 200 or drag-
ging a number block out of the Math drawer) and plug it into def energy, as
shown in Figure 5-4.

Figure 5-4. Initializing the variable energy to 200

Figure 5-5 shows how creating the variable also added blocks to the My Definitions
drawer to set or get the value of energy.

Figure 5-5. View of the My Definitions drawer showing new global energy and set global energy blocks

Drawing the Energy Bar
We want to communicate the energy level with a red bar whose length in pixels is
the energy value. To do so, we could create two similar sets of blocks as follows:

Displaying the Energy Level  75 

1. Draw a red line from (0, 0) to (energy, 0) in FieldCanvas to show the current
energy level.

2. Draw a white line from (0, 0) to (EnergyCanvas.Width, 0) in FieldCanvas to
erase the current energy level before drawing the new level.

However, a better alternative is to create a procedure that can draw a line of any
length and of any color in FieldCanvas. To do this, we must specify two arguments,
length and color, when our procedure is called, just as we needed to specify
parameter values in MoleMash when we called the built-in random integer proce-
dure. Here are the steps for creating a DrawEnergyLine procedure, which is shown in
Figure 5-6.

1. Go to the Definition drawer and drag out a to procedure block.

2. Click its name (probably “procedure1”) and change it to “DrawEnergyLine”.

3. Go back to the Definition drawer and drag out a name block, snapping it into
the arg (short for argument) socket. Click its name and change it to “color”.

4. Repeat step 3 to add a second argument and name it “length”.

5. Fill in the rest of the procedure as shown in Figure 5-6. You can find the new
color and length blocks in the My Definitions drawer.

Figure 5-6. Defining the procedure DrawEnergyLine

Now that you’re getting the hang of creating your own procedures, let’s also write a
DisplayEnergyLevel procedure that calls DrawEnergyLine twice, once to erase the
old line (by drawing a white line all the way across the canvas) and once to display
the new line, as shown in Figure 5-7.

76  Chapter 5:  Ladybug Chase

Figure 5-7. Defining the procedure DisplayEnergyLevel

The DisplayEnergyLevel procedure consists of four lines that do the following:

1. Set the paint color to white.

2. Draw a line all the way across EnergyCanvas (which is only 1 pixel high).

3. Set the paint color to red.

4. Draw a line whose length in pixels is the same as the energy value.

Note. The process of replacing common code with calls to a new
procedure is called refactoring, a set of powerful techniques for
making programs more maintainable and reliable. In this case, if we
ever wanted to change the height or location of the energy line, we
would just have to make a single change to DrawEnergyLine, rather
than making changes to every call to it. For more information on
procedures, see Chapter 21.

Starvation
Unlike the apps in previous chapters, this game has a way to end: it’s over if the
ladybug fails to eat enough aphids or is eaten by the frog. In either of these cases, we
want the ladybug to stop moving (which we can do by setting Ladybug.Enabled to
false) and for the picture to change from a live ladybug to a dead one (which we can
do by changing Ladybug.Picture to the name of the appropriate uploaded image).
Create the GameOver procedure as shown in Figure 5-8.

Displaying the Energy Level  77 

Figure 5-8. Defining the procedure GameOver

Next, add the code outlined in red in Figure 5-9 to UpdateLadybug (which, as you
may recall, is called by Clock.Timer every 10 milliseconds) to:

• Decrement its energy level.

• Display the new level.

• End the game if energy is 0.

Test your app. You should be able to test this code on your phone
and verify that the energy level decreases over time, eventually caus-
ing the ladybug’s demise. If you want to restart the application, press
the “Connect to Device...” button in the Blocks Editor.

Figure 5-9. Second version of the procedure UpdateLadybug

78  Chapter 5:  Ladybug Chase

Adding an Aphid
The next step is to add an aphid. Specifically, an aphid should flit around FieldCanvas.
If the ladybug runs into the aphid (thereby “eating” it), the ladybug’s energy level
should increase and the aphid should disappear, to be replaced by another one a
little later. (From the user’s point of view, it will be a different aphid, but it will really
be the same ImageSprite component.)

Adding an ImageSprite
The first step to add an aphid is to go back to the Designer and create another
ImageSprite, being sure not to place it on top of the ladybug. It should be renamed
Aphid and its properties set as follows:

1. Set its Picture property to the aphid image file you uploaded.

2. Set its Interval property to 10, so, like the ladybug, it moves every 10
milliseconds.

3. Set its Speed to 2, so it doesn’t move too fast for the ladybug to catch it.

Don’t worry about its X and Y properties (as long as it’s not on top of the ladybug) or
its Heading property, which will be set in the Blocks Editor.

Controlling the Aphid
By experimenting, we found it worked best for the aphid to change directions
approximately once every 50 milliseconds (5 “ticks” of Clock1). One approach to
enabling this behavior would be to create a second clock with a TimerInterval of
50 milliseconds. However, we’d like you to try a different technique so you can learn
about the random fraction block, which returns a random number greater than or
equal to 0 and less than 1 each time it is called. Create the UpdateAphid procedure
shown in Figure 5-10 and add a call to it in Clock1.Timer.

How the blocks work
Whenever the timer goes off (100 times per second), both UpdateLadybug (like
before) and UpdateAphid are called. The first thing that happens in UpdateAphid
is that a random fraction between 0 and 1 is generated—for example, 0.15. If this
number is less than 0.20 (which will happen 20% of the time), the aphid will change
its direction to a random number of degrees between 0 and 360. If the number is not
less than 0.20 (which will be the case the remaining 80% of the time), the aphid will
stay the course.

Adding an Aphid  79 

Figure 5-10. Adding the procedure UpdateAphid

Having the Ladybug Eat the Aphid
The next step is having the ladybug “eat” the aphid when they collide. Fortunately,
App Inventor provides blocks for detecting collisions between ImageSprite com-
ponents, which raises the question: what should happen when the ladybug and the
aphid collide? You might want to stop and think about this before reading on.

To handle what happens when the ladybug and aphid collide, let’s create a proce-
dure, EatAphid, that does the following:

• Increases the energy level by 50 to simulate eating the tasty treat.

• Causes the aphid to disappear (by setting its Visible property to false).

• Causes the aphid to stop moving (by setting its Enabled property to false).

• Causes the aphid to move to a random location on the screen. (This follows the
same pattern as the code to move the mole in MoleMash).

Check that your blocks match Figure 5-11. If you had other ideas of what should
happen, such as sound effects, you can add those too.

80  Chapter 5:  Ladybug Chase

Figure 5-11. Adding the procedure EatAphid

How the blocks work
Whenever EatAphid is called, it adds 50 to the variable energy, staving off starva-
tion for the ladybug. Next, the aphid’s Visible and Enabled properties are set to
false so it seems to disappear and stops moving. Finally, random x and y coordinates
are generated for a call to Aphid.MoveTo so that, when the aphid reappears, it’s in a
new location (otherwise, it will be eaten as soon as it reemerges).

Detecting a Ladybug–Aphid Collision
Figure 5-12 shows the code to detect collisions between the ladybug and the aphid.
Note that when you add a condition to the “and” block, a new test socket appears.

Figure 5-12. Detecting and acting on collisions between the ladybug and aphid

How the blocks work
When the ladybug collides with another ImageSprite, Ladybug.CollidedWith gets
called, with the parameter “other” bound to whatever the ladybug collided with.
Right now, the only thing it can collide with is the aphid, but we’ll be adding a frog

Adding an Aphid  81 

later. We’ll use defensive programming and explicitly check that the collision was with
the aphid before calling EatAphid. There’s also a check to confirm that the aphid
is visible. Otherwise, after an aphid is eaten but before it reappears, it could collide
with the ladybug again. Without the check, the invisible aphid would be eaten again,
causing another jump in energy without the user understanding why.

Note. Defensive programming is the practice of writing code in such
a way that it is still likely to work even if the program gets modi-
fied. In Figure 5-12, the test other = Aphid is not strictly necessary
because the only thing the ladybug can currently collide with is the
aphid, but having the check will prevent our program from mal-
functioning if we add another ImageSprite and forget to change
Ladybug .CollidedWith. Programmers generally spend more time
fixing bugs than writing new code, so it is well worth taking a little
time to write code in a way that prevents bugs.

The Return of the Aphid
To make the aphid eventually reappear, you should modify UpdateAphid as shown in
Figure 5-13 so it changes the aphid’s direction only if it is visible. (Changing it if it’s in-
visible is a waste of time.) If the aphid is not visible (as in, it has been eaten recently),
there is a 1 in 20 (5%) chance that it will be reenabled—in other words, made eligible
to be eaten again.

Figure 5-13. Modifying UpdateAphid to make invisible aphids come back to life

82  Chapter 5:  Ladybug Chase

How the blocks work
UpdateAphid is getting pretty complex, so let’s carefully step through its behavior:

• If the aphid is visible (which will be the case unless it was just eaten), UpdateAphid
behaves as we first wrote it. Specifically, there is a 20% chance of its changing
direction.

• If the aphid is not visible (was recently eaten), then the “else-do” part of the ifelse
block will run. A random number is then generated. If it is less than .05 (which it
will be 5% of the time), the aphid becomes visible again and is enabled, making
it eligible to be eaten again.

Because UpdateAphid is called by Clock1.Timer, which occurs every 10 milliseconds,
and there is a 1 in 20 (5%) chance of the aphid becoming visible again, the aphid will
take on average 200 milliseconds (1/5 of a second) to reappear.

Adding a Restart Button
As you may have noticed from testing the app with your new aphid-eating
functionality, the game really needs a Restart button. (This is another reason why
it’s helpful to design and build your app in small chunks and then test it—you often
discover things that you may have overlooked, and it’s easier to add them as you
progress than to go back in and change them once the app is “complete.”) In the
Component Designer, add a Button component underneath EnergyCanvas, rename
it “RestartButton”, and set its Text property to “Restart”.

In the Blocks Editor, create the code shown in Figure 5-14 to do the following when
the RestartButton is clicked:

1. Set the energy level back to 200.

2. Reenable the aphid and make it visible.

3. Reenable the ladybug and change its picture back to the live ladybug (unless
you want zombie ladybugs!).

Figure 5-14. Restarting the game when RestartButton is pressed

Adding the Frog  83 

Adding the Frog
Right now, keeping the ladybug alive isn’t too hard. We need a predator. Specifically,
we’ll add a frog that moves directly toward the ladybug. If they collide, the ladybug
gets eaten, and the game ends.

Having the Frog Chase the Ladybug
The first step to having the frog chase the ladybug is returning to the Component
Designer and adding a third ImageSprite—Frog—to FieldCanvas. Set its Picture
property to the appropriate picture, its Interval to 10, and its Speed to 1, since it
should be slower-moving than the other creatures.

Figure 5-15 shows UpdateFrog, a new procedure you should create and call from
Clock1.Timer.

Figure 5-15. Making the frog move toward the ladybug

How the blocks work
By now, you should be familiar with the use of the random fraction block to make
an event occur with a certain probability. In this case, there is a 10% chance that the
frog’s direction will be changed to head straight toward the ladybug. This requires
trigonometry, but don’t panic—you don’t have to figure it out yourself! App Inventor
handles a ton of math functions for you, even stuff like trig. In this case, you want to
use the atan2 (arctangent) block, which returns the angle corresponding to a given
set of x and y values.

84  Chapter 5:  Ladybug Chase

(For those of you familiar with trigonometry, the reason the y argument to atan2 has
the opposite sign of what you’d expect—the opposite order of arguments to subtract—
is that the y coordinate increases in the downward direction on an Android Canvas,
the opposite of what would occur in a standard x–y coordinate system.)

Having the Frog Eat the Ladybug
We now need to modify the collision code so that if the ladybug collides with the
frog, the energy level and bar goes to 0 and the game ends, as shown in Figure 5-16.

Figure 5-16. Making the frog eat the ladybug

How the blocks work
In addition to the first if, which checks if the ladybug collided with the aphid, there
is now a second if, which checks if the ladybug has collided with the frog. If the lady-
bug and the frog collide, three things happen:

1. The variable energy goes down to 0, since the ladybug has lost its life force.

2. DisplayEnergy is called, to erase the previous energy line (and draw the
new—empty—one).

3. The procedure we wrote earlier, GameOver, is called to stop the ladybug from
moving and changes its picture to that of a dead ladybug.

Adding the Frog  85 

The Return of the Ladybug
RestartButton.Click already has code to replace the picture of the dead ladybug
with the one of the live ladybug. Now you need to add code to move the live lady-
bug to a random location. (Think about what would happen if you didn’t move the
ladybug at the beginning of a new game. Where would it be in relation to the frog?)
Figure 5-17 shows the blocks to move the ladybug when the game restarts.

Figure 5-17. The final version of RestartButton.Click

How the blocks work
The only difference between this version of RestartButton.Click and the previ-
ous version is the Ladybug.MoveTo block and its arguments. The built-in function
random integer is called twice, once to generate a legal x coordinate and once to
generate a legal y coordinate. While there is nothing to prevent the ladybug from
being placed on top of the aphid or the frog, the odds are against it.

Test your app. Restart the game and make sure the ladybug shows
up in a new random location.

86  Chapter 5:  Ladybug Chase

Adding Sound Effects
When you tested the game, you may have noticed there isn’t very good feedback
when an animal gets eaten. To add sound effects and tactile feedback, do the
following:

1. In the Component Designer, add a Sound component. Set its Source to the
sound file you uploaded.

2. Go to the Blocks Editor, where you will:

a. Make the phone vibrate when an aphid is eaten by adding a Sound1
.Vibrate block with an argument of 100 (milliseconds) in EatAphid.

b. Make the frog ribbit when it eats the ladybug by adding a call to
Sound1.Play in Ladybug.CollidedWith just before the call to
GameOver.

Variations
Here are some ideas of how to improve or customize this game:

• Currently, the frog and aphid keep moving after the game has ended. Prevent
this by setting their Enabled properties to false in GameOver and back to true in
RestartButton.Click.

• Display a score indicating how long the ladybug has remained alive. You can do
this by creating a label that you increment in Clock1.Timer.

• Make the energy bar more visible by increasing the Height of EnergyCanvas to 2
and drawing two lines, one above the other, in DrawEnergyLine. (This is another
benefit of having a procedure rather than duplicated code to erase and redraw
the energy line: you just need to make a change in one place to change the
size—or color, or location—of the line.)

• Add ambiance with a background image and more sound effects, such as nature
sounds or a warning when the ladybug’s energy level gets low.

• Have the game get harder over time, such as by increasing the frog’s Speed prop-
erty or decreasing its Interval property.

• Technically, the ladybug should disappear when it is eaten by the frog. Change
the game so that the ladybug becomes invisible if eaten by the frog but not if it
starves to death.

• Replace the ladybug, aphid, and frog pictures with ones more to your taste, such
as a hobbit, orc, and evil wizard or a rebel starfighter, energy pod, and Imperial
starfighter.

Summary  87 

Summary
With two games now under your belt (if you completed the MoleMash tutorial), you
now know how to create your own games, which is the goal of many new program-
mers or wannabes! Specifically, you learned:

• You can have multiple ImageSprite components (the ladybug, the aphid, and
the frog) and can detect collisions between them.

• The tilt of the phone can be detected by the OrientationSensor, and the
value can be used to control the movement of a sprite (or anything else you can
imagine).

• A single Clock component can control multiple events that occur at the same
frequency (changes in the ladybug’s and frog’s directions), or at different frequen-
cies, by using the random fraction block. For example, if you want an event to
occur approximately one-fourth (25 percent) of the time, put it in the body of an
if block that is only executed when the result of random fraction is less than .25.

• You can have multiple Canvas components in a single app, which we did to have
both a playing field and to display a variable graphically (instead of through a
Label).

• User-defined procedures can be defined with parameters (such as “color” and
“length” in DrawEnergyLine) that control the behavior, greatly expanding the
power of procedural abstraction.

Another component useful for games is Ball, which only differs from ImageSprite
in having the appearance of a filled circle rather than an arbitrary image.

CHAPTER 6

Paris Map Tour

In this chapter, you’ll build an app that lets you create your own custom guide for a
dream trip to Paris. And since a few of your friends can’t join you, we’ll create a compan-
ion app that lets them take a virtual tour of Paris as well. Creating a fully functioning map
app might seem really complicated, but App Inventor lets you use the ActivityStarter
component to launch Google Maps for each virtual location. First, you’ll build an app
that launches maps for the Eiffel Tower, the Louvre, and Notre Dame Cathedral with a
single click. Then you’ll modify the app to create a virtual tour of satellite maps that are
also available from Google Maps.

What You’ll Learn
This chapter introduces the following App Inventor components and concepts:

• The Activity Starter component for launching other Android apps from
your app. You’ll use this component here to launch Google Maps with various
parameters.

• The ListPicker component for allowing the user to choose from a list of
locations.

90  Chapter 6:  Paris Map Tour

Designing the Components
Create a new project in App Inventor and call it
“ParisMapTour”. The user interface for the app has
an Image component with a picture of Paris, a Label
component with some text, a ListPicker compo-
nent that comes with an associated button, and an
ActivityStarter (non-visible) component. You can
design the components using the snapshot in
Figure 6-1.

The components listed in Table 6-1 were used to
create this Designer window. Drag each component
from the Palette into the Viewer and name it as
specified.

Table 6-1. Components for the Paris Map Tour

Component type Palette group What you’ll name it Purpose

Image Basic Image1 Show a static image of a Paris map on screen.

Label Basic Label1 Display the text “Discover Paris with your 
Android!”

ListPicker Basic ListPicker1 Display the list of destination choices.

ActivityStarter Other stuff ActivityStarter1 Launch the Maps app when a destination is 
chosen.

Setting the Properties of ActivityStarter
ActivityStarter is a component that lets you launch any Android app—a browser,
Google Maps, or even another one of your own apps. When a user launches another
app from your app, he can click the back button to return to your app. You’ll build
ParisMapTour so that the Maps application is launched to show particular maps
based on the user’s choice. The user can then hit the back button to return to your
app and choose a different destination.

ActivityStarter is a relatively low-level component in that you’ll need to set some
properties with information familiar to a Java Android SDK programmer, but foreign
to the other 99.999% of the world. For this app, enter the properties as specified in
Table 6-2, and be careful—even the upper-/lowercase letters are important.

Figure 6-1. TheParis Map Tour app
running in the emulator

Adding Behaviors to the Components  91 

Table 6-2. ActivityStarter properties for launching Google Maps

Property Value

Action android.intent.action.VIEW

ActivityClass com.google.android.maps.MapsActivity

ActivityPackage com.google.android.apps.maps

In the Blocks Editor, you’ll set one more property, DataUri, which lets you launch a
specific map in Google Maps. This property must be set in the Blocks Editor instead
of the Component Designer because it needs to be dynamic; it will change based
on whether the user chooses to visit the Eiffel Tower, the Louvre, or the Notre Dame
Cathedral.

We’ll get to the Blocks Editor in just a moment, but there are a couple more details
to take care of before you can move on to programming the behavior for your
components:

1. Download the file metro.jpg from the book site (http://examples.oreilly.com/
0636920016632/) onto your computer, and then choose Add in the Media sec-
tion to load it into your project. You’ll then need to set it as the Picture property
of Image1.

2. The ListPicker component comes with a button; when the user clicks it, the
choices are listed. Set the text of that button by changing the Text property of
ListPicker1 to “Choose Paris Destination”.

Adding Behaviors to the Components
In the Blocks Editor, you’ll need to define a list of destinations, and two behaviors:

• When the app begins, the app loads the destinations into the ListPicker com-
ponent so the user can choose one.

• When the user chooses a destination from the ListPicker, the Maps application
is launched and shows a map of that destination. In this first version of the app,
you’ll just open Maps and tell it to run a search for the chosen destination.

Creating a List of Destinations
Open the Blocks Editor and create a variable with the list of Paris destinations using
the blocks listed in Table 6-3.

92  Chapter 6:  Paris Map Tour

Table 6-3. Blocks for creating a destinations variable

Block type Drawer Purpose

def variable ("Destina-
tions")

Definitions Create a list of the destinations.

make a list Lists Add the items to the list.

text ("Tour Eiffel") Text The first destination.

text ("Musée du Louvre") Text The second destination.

text ("Cathédrale Notre Dame") Text The third destination.

The destinations variable will call the make a list function, into which you can
plug the text values for the three destinations in your tour, as shown in Figure 6-2.

Figure 6-2. Creating a list is easy in App Inventor

Letting the User Choose a Destination
The purpose of the ListPicker component is to display a list of items for the user to
choose from. You preload the choices into the ListPicker by setting the property
Elements to a list. For this app, you want to set the ListPicker’s Elements property to
the destinations list you just created. Because you want to display the list when the
app launches, you’ll define this behavior in the Screen1.Initialize event. You’ll need
the blocks listed in Table 6-4.

Table 6-4. Blocks for launching the ListPicker when the app starts

Block type Drawer Purpose

Screen1.Initialize Screen1 This event is triggered when the app starts.

set ListPicker1
. Elements to

ListPicker1 Set this property to the list you want to appear.

global destinations My Definitions The list of destinations.

How the blocks work
Screen1.Initialize is triggered when the app begins. As shown in Figure 6-3, the
event handler sets the Elements property of ListPicker so that the three destina-
tions will appear.

Adding Behaviors to the Components  93 

Figure 6-3. Put anything you want to happen when the app starts in a Screen1.Initialize event handler

Test your app. First, you’ll need to restart the app by clicking
“Connect to Device. . .” in the Blocks Editor. Then, on the phone, click
the button labeled “Choose Paris Destination.” The list picker should
appear with the three items.

Opening Maps with a Search
Next, you’ll program the app so that when the user chooses one of the destinations,
the ActivityStarter launches Google Maps and searches for the selected location.

When the user chooses an item from the ListPicker component, the ListPicker
.AfterPicking event is triggered. In the event handler for AfterPicking, you need to
set the DataUri of the ActivityStarter component so it knows which map to open,
and then you need to launch Google Maps using ActivityStarter.StartActivity. The
blocks for this functionality are listed in Table 6-5.

Table 6-5. Blocks to launch Google Maps with the Activity Starter

Block type Drawer Purpose

ListPicker1.After
Picking

ListPicker1 This event is triggered when the user chooses from ListPicker.

set ActivityStarter1
.DataUri to

ActivityStarter1 The DataUri tells Maps which map to open on launch.

make text Text Build the DataUri from two pieces of text.

text ("geo:0,0?q=") Text The first part of the DataUri expected by Maps.

ListPicker1.Selection ListPicker1 The item the user chose.

ActivityStarter1
.StartActivity

ActivityStarter1 Launch Maps.

How the blocks work
When the user chooses from the ListPicker, the chosen item is stored in ListPicker
.Selection and the AfterPicking event is triggered. As shown in Figure 6-4, the
DataUri property is set to a text object that combines “http://maps.google.com/?q=”
with the chosen item. So, if the user chose the first item, “Tour Eiffel,” the DataUri
would be set to “http://maps.google.com/?q=Tour Eiffel.”

94  Chapter 6:  Paris Map Tour

Figure 6-4. Setting the DataURI to launch the selected map

Since you already set the other properties of the ActivityStarter so that it knows
to open Maps, the ActivityStarter1.StartActivity block launches the Maps app and
invokes the search proscribed by the DataUri.

Test your app. Restart the app and click the “Choose Paris
Destination” button again. When you choose one of the destina-
tions, does a map of that destination appear? Google Maps should
also provide a back button to return you to your app to choose
again—does that work? (You may have to click the back button a
couple of times.)

Setting Up a Virtual Tour
Now let’s spice up the app and have it open some great zoomed-in and street views
of the Paris monuments so your friends at home can follow along while you’re away.
To do this, you’ll first explore Google Maps to obtain the URLs of some specific maps.
You’ll still use the same Parisian landmarks for the destinations, but when the user
chooses one, you’ll use the index (the position in the list) of her choice to select and
open a specific zoomed-in or street-view map.

Before going on, you may want to save your project (using Save As) so you have a
copy of the simple map tour you’ve created so far. That way, if you do anything that
causes issues in your app, you can always go back to this working version and try
again.

Finding the DataUri for Specific Maps
The first step is to open Google Maps on your computer to find the specific maps you
want to launch for each destination:

1. On your computer, browse to http://maps.google.com.

2. Search for a landmark (e.g., the Eiffel Tower).

Setting Up a Virtual Tour  95 

3. Zoom in to the level you desire.

4. Choose the type of view you want (e.g., Address, Satellite, or Street View).

5. Click the Link button near the top right of the Maps window and copy the URL
for the map. You’ll use this URL (or parts of it) to launch the map from your app.

Using this scheme, Table 6-6 shows the URLs you’ll use.

Table 6-6. Virtual tour URLs for Google Maps

Landmark Maps URL

Tour Eiffel  http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=eiffel+tow
er&sll=37.0625,-95.677068&sspn=48.909425,72.333984&ie=UTF8&hq=Tour+Eiffel
&hnear=Tour+Eiffel,+Quai+Branly,+75007+Paris,+Ile-de-France,+France&ll=48.85
7942,2.294748&spn=0.001249,0.002207&t=h&z=19

Musée du Louvre http://maps.google.com/maps?f=q&source=s_q&hl=en&q=louvre&sll=48.86096,
2.335421&sspn=0.002499,0.004415&ie=UTF8&t=h&split=1&filter=0&rq=1&ev=zi
&radius=0.12&hq=louvre&hnear=&ll=48.86096,2.335421&spn=0.002499,0.00441
5&z=18

Cathédrale Notre 
Dame (Street 
View)

http://maps.google.com/maps?f=q&source=s_q&hl=en&q=french+landmarks&sll
=48.853252,2.349111&sspn=0.002411,0.004415&ie=UTF8&t=h&radius=0.12&split
=1&filter=0&rq=1&ev=zi&hq=french+landmarks&hnear=&ll=48.853252,2.349111
&spn=0,0.004415&z=18&layer=c&cbll=48.853046,2.348861&panoid=74fLTqeYdgk
PYj6KKLlqgQ&cbp=12,63.75,,0,-35.58

To view any of these maps, paste the URLs from Table 6-6 into a browser. The first two
are zoomed-in satellite views, while the third is a street view.

You can use these URLs directly to launch the maps you want, or you can define
cleaner URLs using the Google Maps protocols outlined at http://mapki.com. For
example, you can show the Eiffel Tower map using only the GPS coordinates found in
the long URL in Table 6-6 and the Maps geo: protocol:

geo:48.857942,2.294748?t=h&z=19

Using such a DataUri, you’ll get essentially the same map as the map based on the
full URL from which the GPS coordinates were extracted. The t=h specifies that Maps
should show a hybrid map with both satellite and address views, and the z=19 speci-
fies the zoom level. If you’re interested in the details of setting parameters for various
types of maps, check out the documentation at http://mapki.com.

To get comfortable using both types of URLs, we’ll use the geo: format for the first
two DataUri settings in our list, and the full URL for the third.

Defining the dataURIs List
You’ll need a list named dataURIs, containing one DataURI for each map you want to
show. Create this list as shown in Figure 6-5 so that the items correspond to the items
in the destinations list (i.e., the first dataURI should correspond to the first destination,
the Eiffel Tower).

96  Chapter 6:  Paris Map Tour

Figure 6-5. The list of maps for your virtual tour

The first two items shown are DataURIs for the Eiffel Tower and the Louvre. They both
use the geo: protocol. The third DataURI is not shown completely because the block
is too long for this page; you should copy this URL from the entry for “Notre Dame,
Street View” in Table 6-6 and place it in a text block.

Modifying the ListPicker.AfterPicking Behavior
In the first version of this app, the ListPicker.AfterPicking behavior set the DataUri
to the concatenation (or combination) of “http://maps.google.com/?q=” and the
destination the user chose from the list (e.g., Tour Eiffel). In this second version, the
AfterPicking behavior must be more sophisticated, because the user is choosing
from one list (destinations), but the DataUri must be selected from another list
(dataURIs). Specifically, when the user chooses an item from the ListPicker, you
need to know the index of his choice so you can use it to select the correct DataUri
from the dataURIs list. We’ll explain more about what an index is in a moment, but it
helps to set up the blocks first to better illustrate the concept. There are quite a few
blocks required for this functionality, all of which are listed in Table 6-7.

Table 6-7. Blocks for choosing a list item based on the user’s selection

Block type Drawer Purpose

def variable ("index") Definitions This variable will hold the index of the user’s choice.

number (1) Math Initialize the index variable to 1.

ListPicker1
.AfterPicking

ListPicker1 This event is triggered when the user chooses an item.

set global index to My Definitions Set this variable to the position of the selected item.

position in list Lists Get the position (index) of a selected item.

ListPicker1
.Selection

ListPicker1 The selected item—for example, “Tour Eiffel.” Plug this into the “thing” 
slot of position in list.

global destinations My Definitions Plug this into the “list” slot of position in list.

set ActivityStarter
.DataUri

ActivityStarter Set this before starting the activity to open the map.

select list item Lists Select an item from the dataURIs list.

global DataURIs My Definitions The list of DataURIs.

Setting Up a Virtual Tour  97 

Table 6-7. Blocks for choosing a list item based on the user’s selection

Block type Drawer Purpose

global index My Definitions Hold the position of the chosen item.

ActivityStarter
.StartActivity

ActivityStarter Launch the Maps app.

How the blocks work
When the user chooses an item from the ListPicker, the AfterPicking event
is triggered, as shown in Figure 6-6. The chosen item—e.g., “Tour Eiffel”—is in
ListPicker.Selection. The event handler uses this to find the position of the selected
item, or the index value, in the destinations list. The index corresponds to the posi-
tion of the chosen destination in the list. So if “Tour Eiffel” is chosen, the index will be
1; if “Musée du Louvre” is chosen, it will be 2; and if “Cathédrale Notre Dame de Paris”
is chosen, the index will be 3.

Figure 6-6. Choosing a list item based on the user’s selection

The index can then be used to select an item from another list—in this case, data
URIs—and to set that entry as the ActivityStarter’s DataUri. Once this is set, the
map can be launched with ActivityStarter.StartActivity.

Test your app. On the phone, click the button labeled “Choose Paris
Destination.” The list should appear with the three items. Choose
one of the items and see which map appears.

(continued)

98  Chapter 6:  Paris Map Tour

Variations
Here are some suggested variations to try:

• Create a virtual tour of some other exotic destination, or of your workplace or
school.

• Create a customizable Virtual Tour app that lets a user create a guide for a location
of her choice by entering the name of each destination along with the URL of a
corresponding map. You’ll need to store the data in a TinyWebDB database and
create a Virtual Tour app that works with the entered data. For an example of how
to create a TinyWebDB database, see the MakeQuiz/TakeQuiz app in Chapter 10.

Summary
Here are some of the ideas we’ve covered in this chapter:

• List variables can be used to hold data like map destinations and URLs.

• The ListPicker component lets the user choose from a list of items. The
ListPicker’s Elements property holds the list, the Selection property holds
the selected item, and the AfterPicking event is triggered when the user
chooses an item from the list.

• The ActivityStarter component allows your app to launch other apps. This
chapter demonstrated its use with the Maps application, but you can launch a
browser or any other Android app as well, even another one you created yourself.
See http://appinventor.googlelabs.com/learn/reference/other/activitystarter.html for
more information.

• You can launch a particular map in Google Maps by setting the DataUri prop-
erty. You can find URIs by configuring a particular map in the browser and then
choosing the Link button to find the URI. You can either place such a URI directly
into the DataUri of your ActivityStarter, or build your own URI using the
protocols defined at http://mapki.com.

• You can identify the index of a list item using the position in list block. With
ListPicker, you can use list position to find the index of the item the user
chooses. This is important when, as in this chapter, you need the index to choose
an item from a second, related list. For more information on List variables and
the ListPicker component, see Chapter 19.

CHAPTER 7

Android, Where’s My Car?

You parked as close to the stadium as you possibly could, but when the concert ends,
you don’t have a clue where your car is. Your friends are equally clueless. Fortunately, you
haven’t lost your Android phone, which never forgets anything, and you remember you
have the hot new app, “Android, Where’s My Car?” With this app, you click a button when
you park your car, and the Android uses its location sensor to record the car’s GPS coor-
dinates and address. Later, when you reopen the app, it gives you directions from where
you currently are to the remembered location—problem solved!

What You’ll Learn
This app covers the following concepts:

• Determining the location of the Android device using the LocationSensor
component.

• Recording data in a database directly on the device using TinyDB.

• Using the ActivityStarter component to open Google Maps from your app
and show directions from one location to another.

100  Chapter 7:  Android, Where’s My Car?

Getting Started
Connect to the App Inventor website and start a new project. Name it “AndroidWhere”
(project names can’t have spaces) and also set the screen’s title to “Android, Where’s
My Car?” Open the Blocks Editor and connect to the phone.

Designing the Components
The user interface for “Android, Where’s My Car?” consists of labels to show your current
and remembered locations, and buttons to record a location and show directions to it.
You’ll need some labels that just show static text; for example, GPSLabel will provide the
text “GPS:” that appears in the user interface. Other labels, such as CurrentLatLabel,
will display data from the location sensor. For these labels, you’ll provide a default value,
(0,0), which will change as the GPS acquires location information.

You’ll also need three non-visible components: a LocationSensor for obtaining the
current location, a TinyDB for storing locations persistently, and an ActivityStarter
for launching Google Maps to get directions between the current and stored locations.

You can build the components from the snapshot of the Component Designer in
Figure 7-1.

Figure 7-1. The “Android, Where’s My Car?” app in the Component Designer

Designing the Components  101 

You can build the user interface shown in Figure 7-1 by dragging out the compo-
nents in Table 7-1.

Table 7-1. All of the components for the app

Component type Palette group What you’ll name it Purpose

Label Basic CurrentHeaderLabel Display the header “Your 
current location”.

HorizontalArrangement Screen Arrangement HorizontalArrangement1 Arrange the address info.

Label Basic CurrentAddressLabel Display the text “Address:”.

Label Basic CurrentAddressDataLabel Display dynamic data: the 
current address.

HorizontalArrangement Screen Arrangement HorizontalArrangement2 Arrange the GPS info.

Label Basic GPSLabel Display the text “GPS:”.

Label Basic CurrentLatLabel Display dynamic data: the 
current latitude.

Label Basic CommaLabel Display “,”.

Label Basic CurrentLongLabel Display dynamic data: the 
current longitude.

Button Basic RememberButton Click to record the current 
location.

Label Basic HorizontalArrangement2 Arrange remembered address 
info.

Label Basic RememberedAddressLabel Display the text “Remembered 
Place”.

Label Basic RememberedAddressData
Label

Display dynamic data: the 
remembered address.

Label Basic RememberedGPSLabel Display the text “GPS”.

Label Basic RememberedLatLabel Display dynamic data: the 
remembered latitude.

Label Basic Comma2Label Display “,”.

Label Basic RememberedLongLabel Display dynamic data: the 
remembered longitude.

Button Basic DirectionsButton Click to show the map.

LocationSensor Sensors LocationSensor1 Sense GPS info.

TinyDB Basic TinyDB1 Store the remembered location 
persistently.

ActivityStarter Other stuff ActivityStarter1 Launch Maps.

102  Chapter 7:  Android, Where’s My Car?

Set the properties of the components in the following way:

• Set the Text property for the labels with fixed text as specified in Table 7-1.

• Set the Text property of the labels for dynamic GPS data to “0.0”.

• Set the Text property of the labels for dynamic addresses to “unknown”.

• Uncheck the Enabled property of the RememberButton and DirectionsButton.

• Set the ActivityStarter properties so that ActivityStarter.StartActivity will
open Google Maps. (The ActivityStarter’s properties are only partially visible
in the user interface shown in Figure 7-1.) Table 7-2 describes how they should
be specified; you can leave blank any properties not listed in the table.

Table 7-2. ActivityStarter properties for launching Google Maps

Property Value

Action android.intent.action.VIEW

ActivityClass com.google.android.maps.MapsActivity

ActivityPackage com.google.android.apps.maps

Note. The ActivityStarter component lets your app open any
Android app installed on the device. The properties indicated in
Table 7-2 can be used verbatim to open Maps; to open other apps,
see the App Inventor documentation at http://appinventor.google
labs.com/learn/reference/other/activitystarter.html.

Adding Behaviors to the Components
You’ll need the following behaviors for this app:

• When the LocationSensor gets a reading, place the current location data into
the appropriate labels of the user interface. This will let the user know the sensor
has read a location and is ready to remember it.

• When the user clicks the RememberButton, copy the current location data into
the labels for the remembered location. You’ll also need to store the remem-
bered location data so it will be there if the user closes and relaunches the app.

• When the user clicks the DirectionsButton, launch Google Maps so it shows
directions to the remembered location.

• When the app is relaunched, load the remembered location from the database
into the app.

Adding Behaviors to the Components  103 

Displaying the Current Location
The LocationSensor.LocationChanged event occurs not just when the device’s
location changes, but also when the sensor first gets a reading. Sometimes that first
reading will take a few seconds, and sometimes you won’t get a reading at all if the
sight lines to GPS satellites are blocked (and depending on the device settings). For
more information about GPS and LocationSensor, see Chapter 23.

When you do get a location reading, the app should place the data into the appropri-
ate labels. Table 7-3 lists all the blocks you’ll need to do this.

Table 7-3. Blocks for getting a location reading and displaying it in the app’s UI

Block type Drawer Purpose

LocationSensor1.Location
Changed

LocationSensor This is the event handler that is triggered when the 
phone receives a new GPS reading.

set CurrentAddressData
Label.Text to

CurrentAddressDataLabel Place the new data into the label for the current address.

LocationSensor1.Current
Address

LocationSensor This property gives you a street address.

set CurrentLatLabel.Text
to

CurrentLatLabel Place the latitude into the appropriate label.

value latitude My Definitions Plug into set CurrentLatLabel.Text to.

set CurrentLongLabel
.Text to

CurrentLongLabel Place the longitude into the appropriate label.

value longitude My Definitions Plug into set CurrentLongLabel.Text to.

set RememberButton
.Enabled to

RememberButton Remember the reading for current location.

true Logic Plug into set RememberButton.Enabled to.

How the blocks work
As you can see in Figure 7-2, latitude and longitude are arguments of the
LocationChanged event, so you grab references to those in the My Definitions draw-
er. CurrentAddress is not an argument, but rather a property of the LocationSensor,
so you grab it from LocationSensor’s drawer. The LocationSensor does some ad-
ditional work for you by calling Google Maps to get a street address corresponding to
the GPS location.

This event handler also enables the RememberButton. We initialized it as disabled
(unchecked) in the Component Designer because there is nothing for the user to
remember until the sensor gets a reading, so now we’ll program that behavior.

104  Chapter 7:  Android, Where’s My Car?

Figure 7-2. Using the LocationSensor to read the current location

Test your app. Live testing—testing your app on a phone con-
nected to your computer—doesn’t work for location-sensing apps.
You need to package and download the app to your phone by
selecting “Package for Phone”→“Download to Connected Phone”
in the Component Designer. Some GPS data should appear and the
RememberButton should be enabled.

If you don’t get a reading, check your Android settings for Location &
Security and try going outside. For more information, see Chapter 23.

Recording the Current Location
When the user clicks the RememberButton, the most current location data should
be placed into the labels for displaying the remembered data. Table 7-4 shows you
which blocks you’ll need for this functionality.

Table 7-4. Blocks for recording and displaying the current location

Block type Drawer Purpose

RememberButton.Click RememberButton Triggered when the user clicks “Remember.”

set RememberedAddress
DataLabel.Text to

RememberedAddressDataLabel Place the sensor’s address data into the label 
for the remembered address.

LocationSensor1.Current
Address

LocationSensor This property gives you a street address.

set RememberedLatLabel
.Text to

RememberedLatLabel Place the latitude sensed into the “remem-
bered” label.

Adding Behaviors to the Components  105 

Table 7-4. Blocks for recording and displaying the current location

Block type Drawer Purpose

LocationSensor.Latitude LocationSensor Plug into set RememberedLat
Label.Text to.

set RememberedLongLabel
.Text to

RememberedLongLabel Place the longitude sensed into the “remem-
bered” label.

LocationSensor.Longitude My Definitions Plug into set RememberedLong
Label.Text to.

set DirectionsButton.Enabled
to

DirectionsButton Map the remembered place.

true Logic Plug into set DirectionsButton
.Enabled to.

How the blocks work
When the user clicks the RememberButton, the location sensor’s current readings are
put into the “remembered” labels, as shown in Figure 7-3.

Figure 7-3. Placing the current location information in the “remembered” labels

You’ll notice also that the DirectionsButton is enabled. This could get tricky, because
if the user clicks the DirectionsButton immediately, the remembered location will
be the same as the current location, so the map that appears won’t provide much
in terms of directions. But that’s not something anyone is likely to do; after the user
moves (e.g., walks to the concert), the current location and remembered location will
diverge.

Test your app. Download the new version of the app to your phone
and test again. When you click the RememberButton, is the data
from the current settings copied into the remembered settings?

(continued)

106  Chapter 7:  Android, Where’s My Car?

Displaying Directions to the Remembered Location
When the user clicks the DirectionsButton, you want the app to open Google Maps
with the directions from the user’s current location to the remembered location (in
this case, where the car is parked).

The ActivityStarter component can open any Android app, including Google Maps.
You have to set some configuration data to use it, but to open something like a
browser or map, the data you need to specify is fairly straightforward.

To open a map, the key property to configure is the ActivityStarter.DataUri
property. You can set the property to any URL that you might enter directly in a
browser. If you want to explore this, open http://maps.google.com in your browser
and ask for directions between, say, San Francisco and Oakland. When they appear,
click the Link button at the top right of the map and check the URL that appears. This
is the kind of URL you need to build in your app.

The difference for your app is that the directions map you’ll create will be from one
specific set of GPS coordinates to another (not city to city). The URL must be in the
following form:

http://maps.google.com/maps?saddr=37.82557,-122.47898&daddr=37.81079,-122.47710

Type that URL into a browser—can you tell which famous landmark it directs you across?

For this app, you need to build the URL and set its source address (saddr) and des-
tination address (daddr) parameters dynamically. You’ve put text together before
in earlier chapters using make text; we’ll do that here as well, plugging in the GPS
data for the remembered and current locations. You’ll put the URL you build in as the
ActivityStarter.DataUri property, and then call ActivityStarter.StartActivity.
Table 7-5 lists all the blocks you’ll need for this.

How the blocks work
When the user clicks the DirectionsButton, the event handler builds a URL for a map
and calls ActivityStarter to launch the Maps application and load the map, as shown
in Figure 7-4. make text is used to build the URL to send to the Maps application.
The resulting URL consists of the Maps domain (http://maps.google.com/maps) along
with two URL parameters, saddr and daddr, which specify the source and destina-
tion locations for the directions. For this app, the saddr is set to the latitude and
longitude of the current location, and the daddr is set to the latitude and longitude
of the location stored for the car.

Adding Behaviors to the Components  107 

Table 7-5. Blocks for recording and displaying the current location

Block type Drawer Purpose

DirectionsButton.Click DirectionsButton Triggered when the user clicks “Directions.”

set ActivityStarter.Data
Uri to

ActivityStarter Set the URL for the map you want to bring up.

make text Text Build a URL from multiple parts.

text ("http://maps.google.com/
maps?saddr=")

Text The fixed part of the URL, the source address.

CurrentLatLabel.Text CurrentLatLabel The current latitude.

text (",") Text Put a comma between the latitude and longitude values.

CurrentLongLabel.Text CurrentLongLabel The current longitude.

text ("&daddr=") Text The second parameter of the URL, the destination address.

RememberedLatLabel
.Text

RememberedLatLabel The remembered latitude.

text (",") Text Put a comma between the values for latitude and longitude.

RememberedLongLabel
.Text

RememberedLongLabel The remembered longitude.

ActivityStarter.Start
Activity

ActivityStarter Open Maps.

Figure 7-4. Building the URL to use for launching the Maps application

108  Chapter 7:  Android, Where’s My Car?

Test your app. Download the new version of the app to your phone
and test again. When a reading comes in, click the RememberButton
and then take a walk. When you click the DirectionsButton, does
the map show you how to retrace your steps? After looking at the
map, click the back button a few times. Do you get back to your app?

Storing the Remembered Location Persistently
So now you’ve got a fully functioning app that remembers a start location and draws
a map back to that location from wherever the user is. But if the user “remembers” a
location and then closes the app, the remembered data will not be available when
he reopens it. Really, you want the user to be able to record the location of his car,
close the app and go to some event, and then relaunch the app to get directions to
the recorded location.

If you’re already thinking back to the No Texting While Driving app (Chapter 4), you’re
on the right track here—we need to store the data persistently in a database using
TinyDB. You’ll use a scheme similar to the one we used in that app:

1. When the user clicks the RememberButton, store the location data to the
database.

2. When the app launches, load the location data from the database into a variable
or property.

You’ll start by modifying the RememberButton.Click event handler so that it stores
the remembered data. To store the latitude, longitude, and address, you’ll need three
calls to TinyDB.StoreValue. Table 7-6 lists the additional blocks you’ll need.

Table 7-6. Blocks for recording and displaying the current location

Block type Drawer Purpose

TinyDB1.StoreValue (3) TinyDB Store the data in the device database.

text ("address") Text Plug this into the “tag” slot of TinyDB1.StoreValue.

LocationSensor.Current
Address

LocationSensor The address to store persistently; plug this into the “value” 
slot of TinyDB1.StoreValue.

text ("lat") Text Plug this into the “tag” slot of the second TinyDB1
.StoreValue.

LocationSensor.Current
Latitude

LocationSensor The latitude to store persistently; plug this into the “value” 
slot of the second TinyDB1.StoreValue.

text ("long") Text Plug this into the “tag” slot of the third TinyDB1.
StoreValue.

LocationSensor.Current
Longitude

LocationSensor The longitude to store persistently; plug this into the 
“value” slot of the third TinyDB1.StoreValue.

Adding Behaviors to the Components  109 

How the blocks work
As shown in Figure 7-5, TinyDB1.StoreValue copies the location data from the
LocationSensor properties into the database. As you may recall from No Texting
While Driving, the StoreValue function has two arguments, the tag and the value.
The tag identifies which data you want to store, and the value is the actual data you
want saved—in this case, the LocationSensor data.

Figure 7-5. Storing the remembered location data in a database

Retrieving the Remembered Location When the App Launches
You store data in a database so you can recall it later. In this app, if a user stores a
location and then closes the app, you want to recall that information from the data-
base and show it to her when she relaunches the app.

As discussed in previous chapters, the Screen.Initialize event is triggered when
your app launches. Retrieving data from a database is a very common thing to do on
startup, and it’s exactly what we want to do for this app.

You’ll use the TinyDB.GetValue function to retrieve the stored GPS data. Because
you need to retrieve the stored address, latitude, and longitude, you’ll need three
calls to GetValue. As with No Texting While Driving, you’ll need to check if there is
indeed data there (if it’s the first time your app is being launched, TinyDB.GetValue
will return an empty text).

As a challenge, see if you can create these blocks and then compare your creation to
the blocks shown in Figure 7-6.

110  Chapter 7:  Android, Where’s My Car?

Figure 7-6. Adding the remembered location to a database so it’s available when the app is closed
and reopened

How the blocks work
To understand these blocks, you can envision a user opening the app the first time,
and opening it later after previously recording location data. The first time the user
opens the app, there won’t be any location data in the database to load, so you don’t
want to set the “remembered” labels or enable the DirectionsButton. On successive
launches, if there is data stored, you do want to load the previously stored location
data from the database.

The blocks first call the TinyDB1.GetValue with a tag of “address,” which is one of the
tags used when you stored the location data earlier. The retrieved value is placed in
the variable tempAddress, where it is checked to see whether it’s empty or contains
data.

The if block is necessary because TinyDB returns an empty text if there is no data
for a particular tag; there isn’t any data the first time the app is launched and there
won’t be until the user clicks the RememberButton. Since the variable tempAddress
now holds the returned value, the blocks check to see if the length of tempAddress is
greater than 0. If the length is greater than 0, the app knows that TinyDB did return
something, and the retrieved value is placed into RememberedAddressDataLabel.
The app also knows that if an address has been stored, it has a latitude and longi-
tude. Thus, those values are also retrieved using TinyDB.GetValue. Finally, if data has
indeed been retrieved, the DirectionsButton is enabled.

The Complete App: Android, Where’s My Car?   111 

Test your app. Download the new version of the app to your phone
and test again. Click the RememberButton and make sure the
readings are recorded. Then close the app and reopen it. Does the
remembered data appear?

The Complete App: Android, Where’s My Car?
Figure 7-7 shows the final blocks for the complete “Android, Where’s My Car?” app.

Variations
Here are some variations you can experiment with:

• Create “Android, Where Is Everyone?”, an app that lets a group of people track
one another’s whereabouts. Whether you’re hiking or at the park, this app could
help save time and possibly even lives. The data for this app is shared, so you’ll
need to use a web database and the TinyWebDB component instead of TinyDB.
See Chapter 22 for more information.

• Create a Breadcrumb app that tracks your whereabouts by recording each loca-
tion change in a list. You should only record a new breadcrumb if the location
has changed by a certain amount, or a certain amount of time has elapsed,
because even slight movement can generate a new location reading. You’ll need
to store the recorded locations in a list—see Chapter 19 for help.

Summary
Here are some of the ideas we’ve covered in this tutorial:

• The LocationSensor component can report the user’s latitude, longitude, and
current street address. Its LocationChanged event is triggered when the sensor
gets its first reading and when the reading changes (the device has moved). For
more information on the LocationSensor, see Chapter 23.

• The ActivityStarter component can launch any app, including Google Maps.
For Maps, you set the DataUri property to the URL of the map you want to dis-
play. If you want to show directions between GPS coordinates, the URL will be in
the following format, but you’d replace the sample data shown here with actual
GPS coordinates:

http://maps.google.com/maps/?saddr=0.1,0.1&daddr=0.2,0.2

• make text is used to piece together (concatenate) separate text items into a
single text object. It allows you to concatenate dynamic data with static text.
With the Maps URL, the GPS coordinates are the dynamic data.

112  Chapter 7:  Android, Where’s My Car?

• TinyDB allows you to store data persistently in the phone’s database. Whereas
the data in a variable or property is lost when an app closes, data stored in the
database can be loaded each time the app is opened. For more information on
TinyDB and databases, see Chapter 22.

Figure 7-7. The blocks for “Android, Where’s My Car?”

CHAPTER 8

Presidents Quiz

The Presidents Quiz is a trivia game
about former leaders of the United
States. Though this quiz is about
presidents, you can use it as a tem-
plate to build quizzes on any topic.

In the previous chapters, you’ve been
introduced to some fundamental
programming concepts. Now you’re
ready for something more challenging.
You’ll find that this chapter requires a
conceptual leap in terms of program-
ming skills and abstract thinking. In
particular, you’ll use two list variables to store the data—in this case, the quiz questions
and answers—and you’ll use an index variable to track where the user is in the quiz.
When you finish, you’ll be armed with the knowledge to create quiz apps and many other
apps that require list processing.

This chapter assumes you’re familiar with the basics of App Inventor: using the
Component Designer to build the user interface, and using the Blocks Editor to specify
event handlers and program the component behavior. If you are not familiar with these
fundamentals, be sure to review the previous chapters before continuing.

You’ll design the quiz so that the user proceeds from question to question by clicking
a Next button and receives feedback on whether each answer he inputs is correct or
incorrect.

What You’ll Learn
This app, shown in Figure 8-1, covers:

• Defining list variables for storing the questions and answers in lists.

• Sequencing through a list using an index; each time the user clicks Next, you’ll
display the next question.

114  Chapter 8:  Presidents Quiz

• Using conditional (if) behaviors: performing certain operations only under spe-
cific conditions. You’ll use an if block to handle the app’s behavior when the user
reaches the end of the quiz.

• Switching an image to show a different picture for each quiz question.

Figure 8-1. The Presidents Quiz running in the emulator

Getting Started
Connect to the App Inventor website and start a new project. Name it “PresidentsQuiz”
and set the screen’s title to “Presidents Quiz”. Open the Blocks Editor and connect
to the phone. Also download the pictures for the quiz from the book’s site (http://
examples.oreilly.com/0636920016632/) onto your computer: roosChurch.gif, nixon.gif,
carterChina.gif, and atomic.gif. You’ll load these images into your project in the next
section.

Designing the Components
The Presidents Quiz app has a simple interface for displaying the question and al-
lowing the user to answer. You can build the components from the snapshot of the
Component Designer shown in Figure 8-2.

Designing the Components  115 

Figure 8-2. The Presidents Quiz in the Designer

To create this interface, first load the images you downloaded into the project. Click
Add in the Media area and select one of the downloaded files (e.g., roosChurch.gif).
Do the same for the other three images. Then add the components listed in Table 8-1.

Table 8-1. Components for the Presidents Quiz app

Component type Palette group What you’ll name it Purpose

Image Basic Image1 The picture displayed with the question.

Label Basic QuestionLabel Display the current question.

Horizontal
Arrangement

Screen Arrange-
ment

Horizontal
Arrangement1

Organize the AnswerPrompt and Text.

TextBox Basic AnswerText The user will enter his answer here.

Button Basic AnswerButton The user clicks this to submit an answer.

Label Basic RightWrongLabel Display “correct!” or “incorrect!”

Button Basic NextButton The user clicks this to proceed to the next question.

Set the properties of the components as follows:

1. Set Image1.Picture to the image file roosChurch.gif, the first picture that should
appear. Set its Width to “Fill parent” and its Height to 200.

2. Set QuestionLabel.Text to “Question…” (you’ll input the first question in the
Blocks Editor).

3. Set AnswerText.Hint to “Enter an answer”. Set its Text property to blank. Move
it into HorizontalArrangement1.

116  Chapter 8:  Presidents Quiz

4. Change AnswerButton.Text to “Submit” and move it into Horizontal
Arrangement1.

5. Change NextButton.Text to “Next”.

6. Change RightWrongLabel.Text to blank.

Adding Behaviors to the Components
You’ll need to program the following behaviors:

• When the app starts, the first question appears, including its corresponding
image.

• When the user clicks the NextButton, the second question appears. When he
clicks it again, the third question appears, and so on.

• When the user reaches the last question and clicks the NextButton, the first
question should appear again.

• When the user answers a question, the app will report whether it is correct or not.

To start, you’ll define two list variables based on the items listed in Table 8-2:
QuestionList to hold the list of questions, and AnswerList to hold the list of corre-
sponding answers. Figure 8-3 shows the two lists you’ll create in the Blocks Editor.

Table 8-2. Variables for holding question and answer lists

Block type Drawer Purpose

def variable ("QuestionList") Definitions Store the list of questions (rename it QuestionList).

def variable ("AnswerList") Definitions Store the list of answers (rename it AnswerList).

make a list Lists Insert the items of the QuestionList.

text (three of them) Text The questions.

make a list Lists Insert the items of the AnswerList.

text (three of them) Text The answers.

Figure 8-3. The lists for the quiz

Adding Behaviors to the Components  117 

Defining the Index Variable
The app needs to keep track of the current question as the user clicks the NextButton
to proceed through the quiz. You’ll define a variable named currentQuestionIndex
for this, and the variable will serve as the index into both the QuestionList and
AnswerList. Table 8-3 lists the blocks you’ll need to do this, and Figure 8-4 shows
what that variable will look like.

Table 8-3. Creating the index

Block type Drawer Purpose

def variable ("currentQuestionIndex") Definitions Hold the index (position) of the current question/answer.

number (1) Math Set the initial value of currentQuestionIndex to 1 (the 
first question).

Figure 8-4. Initiating the index blocks with a value of 1

Displaying the First Question
Now that you’ve defined the variables you need, you can specify the app’s interactive
behavior. As with any app, it’s important to work incrementally and define one be-
havior at a time. To start, let’s think only about the questions—specifically, displaying
the first question in the list when the app launches. We’ll come back and deal with
the images a bit later.

You want your code blocks to work regardless of the specific questions that are in the
list. That way, if you decide to change the questions or create a new quiz by copying
and modifying this app, you’ll only need to change the actual questions in the list
definitions, and you won’t need to change any event handlers.

So, for this first behavior, you don’t want to refer directly to the first question, “Which
president implemented the ‘New Deal’ during the Great Depression?” Instead, you
want to refer, abstractly, to the first slot in the QuestionList (regardless of the
specific question there). That way, the blocks will still work even if you modify the
question in that first slot.

You select particular items in a list with the select list item block. The block asks you
to specify the list and an index (a position in the list). If a list has three items, you can
enter 1, 2, or 3 as the index.

For this first behavior, when the app launches, you want to select the first item in
QuestionList and place it in the QuestionLabel. As you’ll recall from the “Android,
Where’s My Car?” app in Chapter 7, if you want something to happen when your app
launches, you program that behavior in the Screen1.Initialize event handler using
the blocks listed in Table 8-4.

118  Chapter 8:  Presidents Quiz

Table 8-4. Blocks to load the initial question when the app starts

Block type Drawer Purpose

Screen1.Initialize Screen1 Event handler triggered when the app begins.

set QuestionLabel
.Text to

QuestionLabel Put the first question in QuestionLabel.

select list item Lists Select the first question from QuestionList.

Global QuestionList My Definitions The list to select questions from.

number (1) Math Select the first question by using an index of 1.

How the blocks work
The Screen1.Initialize event is triggered when the app begins. As shown in
Figure 8-5, the first item of the variable QuestionList is selected and placed into
QuestionLabel.Text. So, when the app begins, the user will see the first question.

Figure 8-5. Selecting the first question

Test your app. Plug in your phone to the computer or click “New
emulator” to open an Android emulator, and then click ”Connect
to Device.” When your app loads, do you see the first item of
QuestionList, “Which president implemented the ‘New Deal’ during
the Great Depression?”

Iterating Through the Questions
Now program the behavior of the NextButton. You’ve already defined the current
QuestionIndex to remember which question the user is on. When the user clicks the
NextButton, the app needs to increment (add one to) the currentQuestionIndex (i.e.,
change it from 1 to 2 or from 2 to 3, and so on). You’ll then use the resulting value of
currentQuestionIndex to select the new question to display.

As a challenge, see if you can build these blocks on your own. When you’re finished,
compare your results against Figure 8-6.

Adding Behaviors to the Components  119 

Figure 8-6. Moving to the next question

How the blocks work
The first row of blocks increments the variable currentQuestionIndex. If current
QuestionIndex has a 1 in it, it is changed to 2. If it has a 2, it is changed to 3, and so
on. Once the currentQuestionIndex variable has been changed, the app uses it to
select the new question to display.

When the user clicks NextButton for the first time, the increment blocks will change
currentQuestionIndex from 1 to 2, so the app will select the second item from
QuestionList, “Which president granted communist China formal recognition in
1979?” The second time NextButton is clicked, currentQuestionIndex will be set
from 2 to 3, and the app will select the third question in the list, “Which president
resigned due to the Watergate scandal?”

Note. Take a minute to compare the blocks of NextButton.Click to
those in the Screen.Initialize event handler. In the Screen.Initialize
blocks, the app used select list item with a concrete number (1)
to select the list item. In these blocks, you’re selecting the list item
using a variable as the index. The app doesn’t choose the first item
in the list, or the second or third; it chooses the currentQuestion
Indexth item, and thus a different item will be selected each time
the NextButton is clicked. This is a very common use for an index—
incrementing its value to find and display items in a list.

The problem with the app is that it simply increments to the next question each time
without any concern for the end of the quiz. When currentQuestionIndex is already
3 and the user clicks the NextButton, the app changes currentQuestionIndex from
3 to 4. It then calls select list item to get the currentQuestionIndexth item—in this

120  Chapter 8:  Presidents Quiz

case, the fourth item. Since there are only three items in the variable QuestionList,
the Android device doesn’t know what to do and forces the app to quit. So how can
we let the app know that it has reached the end of the quiz?

Test your app. Test the behavior of the NextButton to see if the app
is working correctly. Click the NextButton on the phone. Does the
phone display the second question, “Which president granted com-
munist China formal recognition in 1979?” It should, and the third
question should appear when you click the NextButton again. But
if you click again, you should see an error: “Attempting to get item
4 of a list of length 3.” The app has a bug! Do you know what the
problem is? Try figuring it out before moving on.

The app needs to ask a question when the NextButton is clicked, and execute differ-
ent blocks depending on the answer. Since you know your app contains three ques-
tions, one way to ask the question would be, “Is the variable currentQuestionIndex
greater than 3?” If the answer is yes, you should set currentQuestionIndex back to 1
so the user is taken back to the first question. The blocks you’ll need for this are listed
in Table 8-5.

Table 8-5. Blocks for checking the index value for the end of the list

Block type Drawer Purpose

if  Control Figure out if the user is on the last question.

=  Math Test if currentQuestionIndex is 3.

global currentQuestion
Index

My Definitions Put this into the left side of =.

number 3 Math Put this into the right side of = since 3 is the number of items in the list.

set global current
Question Index to

My Definitions Set to 1 to revert to the first question.

number 1 Math Set the index to 1.

Adding Behaviors to the Components  121 

Test your app. Because variables like currentQuestionIndex
aren’t visible when you run an app, they are often the source of bugs
in a program. Fortunately, App Inventor provides a way to “watch”
variables during testing. Specifically, you can right-click a def
variable block and select Watch, and a little box will appear, show-
ing the value of the variable. In this case, right-click the def current
QuestionIndex definition to watch it. Then click on the “Connect to
Device...” button in the Blocks Editor to restart the app. The def current
QuestionIndex block will appear with a watch box displaying the
initial value of currentQuestionIndex (1), as shown in Figure 8-8.

Figure 8-8. Watching a variable while testing your app

Now pick up the phone and click the NextButton. The second ques-
tion, “Which president granted communist China formal recognition
in 1979?” should appear in the QuestionLabel on the phone, as
before. On the App Inventor screen, a 2 should appear in the current
QuestionIndex watch box, as shown in Figure 8-9.

Figure 8-9. Confirming that the index is incrementing

When you click again, the third question should appear on the
phone and a 3 should appear in the watch box. Now for the be-
havior you’re really testing: if you click again, you should see 1 in
currentQuestionIndex, and the first question (“Which president
implemented the ‘New Deal’ during the Great Depression?”) should
appear on the phone.

122  Chapter 8:  Presidents Quiz

When the user clicks the NextButton, the app increments the index as it did before.
But then, as shown in Figure 8-7, it checks to see if currentQuestionIndex is larger
than 3, the number of questions. If it is larger than 3, currentQuestionIndex is set
back to 1, and the first question is displayed. If it is 3 or less, the blocks within the if
block are not performed, and the current question is displayed as usual.

Figure 8-7. Checking if the last (third) question has been reached

Making the Quiz Easy to Modify
If your blocks for the NextButton work, pat yourself on the back—you are on your
way to becoming a programmer! But what if you added a new question (and answer)
to the quiz? Would your blocks still work?

To explore this, first add a fourth question to QuestionList and a fourth answer into
AnswerList, as shown in Figure 8-10.

Figure 8-10. Adding an item to both lists

Making the Quiz Easy to Modify  123 

Test your app. Click the NextButton several times. You’ll notice that
the fourth question never appears, no matter how many times you
click Next.

Do you know what the problem is? Before reading on, see if you can
fix the blocks so the fourth question appears.

The problem is that the test to determine whether the user is on the last question is
too specific; it asks if the currentQuestionIndex variable is 3. You could just change
the number 3 to a 4, and the app would work correctly again. The problem with that
solution, however, is that each time you modify the questions and answers, you also
have to remember to make this change. Such dependencies in a computer program
often lead to bugs, especially as an app grows in complexity.

A much better strategy is to design the blocks so that they will work no matter how
many questions there are. Such generality makes it easier if you, as a programmer,
want to customize your quiz for some other topic. It is also essential if the list you are
working with changes dynamically—for example, think of a quiz app that allows the
user to add new questions (you’ll build this in Chapter 10).

For a program to be more general, it can’t refer to concrete numbers like 3, as that
only works for quizzes of three questions. So, instead of asking if the value of
currentQuestionIndex is larger than the specific number 3, ask if it is as large as the
number of items in QuestionList. If the app asks this more general question, it will
work even when you add to or remove items from the QuestionList. So modify the
NextButton.Click event handler to replace the previous test that referred directly to
3. You’ll need the blocks listed in Table 8-6.

Table 8-6. Blocks to check the length of the list

Block type Drawer Purpose

length of list Lists Ask how many items are in QuestionList.

global Question
List

My Definitions Put this into the “list” slot of length of list.

How the Blocks Work
The if test now compares the currentQuestionIndex to the length of the
QuestionList, as shown in Figure 8-11. So, if currentQuestionIndex is 5, and the
length of the QuestionList is 4, then the currentQuestionIndex will be set back
to 1. Note that, because the blocks no longer refer to 3 or any specific number, the
behavior will work no matter how many items are in the list.

124  Chapter 8:  Presidents Quiz

Figure 8-11. Checking for the end of the list in a generic way

Test your app. When you click the NextButton, does the app now
cycle through the four questions, moving to the first one after the
fourth?

Switching the Image for Each Question
Now that you’ve programmed all the behaviors for moving through the questions
(and you’ve made your code smarter and more flexible by making it more abstract),
let’s get the images working properly, too. Right now, the app shows the same image
no matter what question is being asked. You can change this so an image pertaining
to each question appears when the user clicks the NextButton. Earlier, you added
four pictures as media for the project. Now, you’ll create a third list, PictureList,
with the image filenames as its items. You’ll also modify the NextButton.Click event
handler to switch the picture each time, just as you switch the question text each
time. (If you’re already thinking about using the currentQuestionIndex here, you’re
on the right track!)

First, create a PictureList and initialize it with the names of the image files. Be sure
that the names are exactly the same as the filenames you loaded into the Media sec-
tion of the project. Figure 8-12 shows how the blocks for the PictureList should look.

Figure 8-12. The PictureList with image filenames as items

Switching the Image for Each Question  125 

Next, modify the NextButton.Click event handler so that it changes the picture that
appears depending on the question index. The Image.Picture property is used to
change the picture displayed. To modify NextButton.Click, you’ll need the blocks
listed in Table 8-7.

Table 8-7. Blocks to add the image that accompanies the question

Block type Drawer Purpose

set Image1.Picture to Image1 Set this to change the picture.

select list item Lists Select the picture corresponding to the current question.

global PictureList My Definitions Select a filename from this list.

global current
Question Index

My Definitions Select the currentQuestionIndexth item.

How the Blocks Work
The currentQuestionIndex serves as the index for both the QuestionList and the
PictureList. As long as you’ve set up your lists properly such that the first question
corresponds to the first picture, the second to the second, and so on, the single index
can serve both lists, as shown in Figure 8-13. For instance, the first picture, roosChurch
.gif, is a picture of President Franklin Delano Roosevelt (sitting with British Prime
Minister Winston Churchill), and “Roosevelt” is the answer to the first question.

Figure 8-13. Selecting the currentQuestionIndexth picture each time

Test your app. Click next a few times. Now does a different image
appear each time you click the NextButton?

126  Chapter 8:  Presidents Quiz

Checking the User’s Answers
Thus far, we’ve created an app that simply cycles through questions and answers
(paired with an image of the answer). It’s a great example of apps that use lists, but to
be a true quiz app, it needs to give users feedback on whether they’re right or wrong.
So now let’s add blocks that report whether the user has answered a question cor-
rectly or not. Our interface is set up so the user enters her answer in AnswerText and
then clicks the AnswerButton. The app must compare the user’s entry with the answer
to the current question, using an ifelse block to check. The RightWrongLabel should
then be modified to report whether or not the answer is correct. There are quite a few
blocks needed to program this behavior, all of which are listed in Table 8-8.

Table 8-8. Blocks for indicating whether an answer is correct or not

Block type Drawer Purpose

AnswerButton.Click AnswerButton Triggered when the user clicks the AnswerButton.

ifelse Control If the answer is correct, do one thing; otherwise, do another.

=  Math Ask if the answer is correct.

AnswerText.Text AnswerText Contains the user’s answer.

select list item Lists Select the current answer from AnswerList.

global AnswerList My Definitions The list to select from.

global currentQuestion
Index

My Definitions The question (and answer) number the user is on.

set RightWrongLabel
.Text to

RightWrongLabel Report the answer here.

text ("correct!") Text Display this if the answer is right.

set RightWrongLabel
.Text to

RightWrongLabel Report the answer here.

text ("incorrect!") Text Display this if the answer is wrong.

How the Blocks Work
As shown in Figure 8-14, the ifelse test asks whether the answer the user entered
(AnswerText.Text) is equal to the currentQuestionIndexth item in the AnswerList.
If currentQuestionIndex is 1, the app will compare the user’s answer with the first
item in AnswerList, “Roosevelt.” If currentQuestionIndex is 2, the app will com-
pare the user’s answer with the second answer in the list, “Carter,” and so on. If the
test result is positive, the “then-do” blocks are executed and the RightWrongLabel
is set to “correct!” If the test is false, the “else-do” blocks are executed and the
RightWrongLabel is set to “incorrect!”

Checking the User’s Answers  127 

Figure 8-14. Checking the answer

Test your app. Try answering one of the questions. It should report
whether or not you answered the question exactly as specified in the
AnswerList. Test with both a correct and incorrect answer. You’ll
likely notice that for an answer to be marked as correct, it has to be
an exact match (meaning case-specific and including any punctua-
tion or spaces) to what you entered in the AnswerList. Be sure to
also test that things work on successive questions.

The app should work, but you might notice that
when you click the NextButton, the “correct!” or
“incorrect!” text and the previous answer are still
there, as shown in Figure 8-15, even though you’re
looking at the next question. It’s fairly innocuous,
but your app users will definitely notice such user
interface issues.

To blank out the RightWrongLabel and the
AnswerText, you’ll put the blocks listed in Table 8-9
within the NextButton.Click event handler.

Figure 8-15. The first answer and
“correct!” still appear when user
moves to the next question.

128  Chapter 8:  Presidents Quiz

Table 8-9. Blocks to clear the RightWrongLabel

Block type Drawer Purpose

set RightWrongLabel
.Text to

RightWrongLabel This is the label to blank out.

text ("") Text When the user clicks NextButton, erase the previous answer’s 
feedback.

set AnswerText.Text
to

AnswerText The user’s answer from the previous question.

text ("") Text When the user clicks the NextButton, erase the previous answer.

How the Blocks Work
As shown in Figure 8-16, when the user clicks the NextButton, he is moving on
to the next question, so the top two rows of the event handler blank out the
RightWrongLabel and the AnswerText.

Figure 8-16. Blanking out the answer and correct/incorrect label for the next question

Test your app. Answer a question and click “Submit”, then click the
NextButton. Did your previous answer and its feedback disappear?

The Complete App: The Presidents Quiz  129 

The Complete App: The Presidents Quiz
Figure 8-17 shows the final block configuration for the Presidents Quiz.

Figure 8-17. The blocks for the Presidents Quiz

130  Chapter 8:  Presidents Quiz

Variations
Once you get this quiz working, you might want to explore some variations. For
example:

• Instead of just showing images for each question, try playing a sound clip or a
short video. With sound, you can turn your quiz into a Name That Tune app.

• The quiz is very rigid in terms of what it accepts as a valid answer. There are a
number of ways to modify this. One is to use the text.contains block to see if
the user’s answer is contained in the actual answer. Another option is to provide
multiple answers for each question, and check by iterating (foreach) through
them to see if any match. You could also figure out how to deal with any extra
spaces your user entered in the answer or allow upper- or lowercase characters
(i.e., make the answers case-insensitive).

• Transform the quiz so that it is multiple choice. You’ll need an additional list to
hold the answer choices for each question. The possible answers will be a list of
lists, with each sublist holding the answer choices for a particular question. Use
the ListPicker component to allow the user to choose an answer. You can read
more about lists in Chapter 19.

Summary
Here are some of the ideas we’ve covered in this tutorial:

• Separate an app into its data (often stored in a list) and its event handlers. Use
an ifelse block to check conditions. For more information on conditionals, see
Chapter 18.

• The blocks in event handlers should refer only abstractly to list items and list size
so that the app will work even if the data in the list is changed.

• Index variables track the current position of an item within a list. When you incre-
ment them, be careful about using an if block to handle the app’s behavior when
the user reaches the end of the list.

CHAPTER 9

Xylophone

It’s hard to believe that using technology to record
and play back music only dates back to 1878, when
Edison patented the phonograph. We’ve come so far
since then—with music synthesizers, CDs, sampling
and remixing, phones that play music, and even
long-distance jamming over the Internet. In this
chapter, you’ll take part in this tradition by building
a Xylophone app that records and plays music.

What You’ll Build
With the app shown in Figure 9-1 (originally created
by Liz Looney of the App Inventor team), you can:

• Play eight different notes by touching colored
buttons on the screen.

• Press a Play button to replay the notes you played
earlier.

• Press a Reset button to make the app forget what
notes you played earlier so you can enter a new
song. Figure 9-1. The Xylophone app UI

132  Chapter 9:  Xylophone

What You’ll Learn
This tutorial covers the following concepts:

• Using a single Sound component to play different audio files.

• Using the Clock component to measure and enforce delays between actions.

• Deciding when to create a procedure.

• Creating a procedure that calls itself.

• Advanced use of lists, including adding items, accessing them, and clearing the list.

Getting Started
Connect to the App Inventor website and start a new project. Name it “Xylophone”,
and also set the screen’s title to “Xylophone”. Open the Blocks Editor and connect to
your phone or emulator.

Designing the Components
This app has 13 different components (8 of which compose the keyboard), listed in
Table 9-1. Since there are so many, it would get pretty boring to create all of them
before starting to write our program, so we’ll break down the app into its functional
parts and build them sequentially by going back and forth between the Designer
and the Blocks Editor, as we did with the Ladybug Chase app in Chapter 5.

Table 9-1. All of the components for the Xylophone app

Component type Palette group What you’ll
name it

Purpose

Button Basic Button1 Play Low C key.

Button Basic Button2 Play D key.

Button Basic Button3 Play E key.

Button Basic Button4 Play F key.

Button Basic Button5 Play G key.

Button Basic Button6 Play A key.

Button Basic Button7 Play B key.

Button Basic Button8 Play High C key.

Sound Media Sound1 Play the notes.

Button Basic PlayButton Play back the song.

Button Basic ResetButton Reset the song memory.

Horizontal
 Arrangement

Screen Arrangement Horizontal
 Arrangement1

Place the Play and Reset buttons next to each other.

Clock Basic Clock1 Keep track of delays between notes.

Creating the Keyboard  133 

Creating the Keyboard
Our user interface will include an eight-note keyboard for a pentatonic (seven-note)
major scale ranging from Low C to High C. We will create this musical keyboard in
this section.

Creating the First Note Buttons
Start by creating the first two xylophone keys, which we will implement as buttons.

1. From the Basic category, drag a Button onto the screen. Leave its name as
Button1. We want it to be a long magenta bar, like a key on a xylophone, so set
its properties as follows:

a. Changing its BackgroundColor property to Magenta.

b. Changing its Text property to “C”.

c. Setting its Width property to “Fill parent” so it goes all the way across the screen.

d. Setting its Height property to 40 pixels.

2. Repeat for a second Button, named Button2, placing it below Button1. Use
Width and Height property values, but set its BackgroundColor property to Red
and its Text property to “D”.

(Later, we will repeat step 2 for six more note buttons.)

The view in the Component Designer should look something like Figure 9-2.

Figure 9-2. Placing buttons to create a keyboard

The display on your phone should look similar, although there will not be any empty
space between the two colored buttons.

Adding the Sound Component
We can’t have a xylophone without sounds, so create a Sound component, leaving
its name as Sound1. Change the MinimumInterval property from its default value of
500 milliseconds to 0. This allows us to play the sound as often as we want, instead
of having to wait half a second (500 milliseconds) between plays. Don’t set its Source
property, which we will set in the Blocks Editor.

134  Chapter 9:  Xylophone

Upload the sound files 1.wav and 2.wav from http://examples.oreilly.com/
0636920016632/. Unlike in previous chapters, where it was OK to change the names
of media files, it is important to use these exact names for reasons that will soon
become clear. You can either upload the remaining six sound files now or wait until
directed to later.

Connecting the Sounds to the Buttons
The behavior we need to program is for a sound file to play when the corresponding
button is clicked. Specifically, if Button1 is clicked, we’d like to play 1.wav; if Button2
is clicked, we’d like to play 2.wav; and so on. We can set this up in the Blocks Editor as
shown in Figure 9-3 by doing the following:

1. From the My Blocks tab and Button1 drawer, drag out the Button1.Click block.

2. From the Sound1 drawer, drag out the set Sound1.Source block, placing it in
the Button1.Click block.

3. Type “text” to create a text block. (This is quicker than going to the Built-In tab
and then the Text drawer, although that would work too.) Set its text value to
“1.wav” and place it in the Sound1.Source block.

4. Add a Sound1.Play block.

Figure 9-3. Playing a sound when a button is clicked

We could do the same for Button2, as shown in Figure 9-4 (just changing the text
value), but the code would be awfully repetitive.

Figure 9-4. Adding more sounds

Repeated code is a good sign that you should create a procedure, which you’ve
already done in Chapter 3’s MoleMash game and Chapter 5’s Ladybug Chase game.
Specifically, we’ll create a procedure that takes a number as an argument, sets
Sound1’s Source to the appropriate file, and plays the sound. This is another example
of refactoring—improving a program’s implementation without changing its behavior,

Creating the Keyboard  135 

a concept introduced in the MoleMash tutorial. We can use the Text drawer’s join block
(an alternate version of make text) to combine the number (e.g., 1) and the text
“.wav” to create the proper filename (e.g., “1.wav”). Here are the steps for creating the
procedure we need:

1. Under the Built-In tab, go to the Definition drawer and drag out the to proce-
dure block.

2. Go back to the Definition drawer and drag a name block into the “arg” socket of
to procedure.

3. Click the rightmost “name” and set the name to “number”.

4. Click procedure and set the name to “PlayNote”.

5. Drag the Sound1.Source block from Button1.Click into PlayNote to the right
of the word “do”. The Sound1.Play block will move with it.

6. Drag the 1.wav block into the trash can.

7. From the Text drawer, drag the join block into Sound1.Source’s socket.

8. Type “number” and move it to the left socket of the join block (if it is not already
there).

9. From the Text drawer, drag the text block into the right socket of the join block.

10. Change the text value to “.wav”. (Remember not to type the quotation marks.)

11. Under the My Blocks tab, go to the My Definitions drawer and drag a call PlayNote
block into the empty body of Button1.Click.

12. Type “1” and put it in the “number” socket.

Now, when Button1 is clicked, the procedure PlayNote will be called, with its num-
ber argument having the value 1. It should set Sound1.Source to “1.wav” and play
the sound.

Create a similar Button2.Click block with a call to PlayNote with an argument of 2.
(You can copy the existing PlayNote block and move it into the body of Button2.
Click, making sure to change the argument.) Your program should look like Figure 9-5.

Figure 9-5. Creating a procedure to play a note

136  Chapter 9:  Xylophone

Telling Android to Load the Sounds
If you tried out the preceding calls to PlayNote, you may have been disappointed
by not hearing the sound you expected or by experiencing an unexpected delay.
That’s because Android needs to load sounds at runtime, which takes time, before
they can be played. This issue didn’t come up before, because filenames placed in a
Sound component’s Source property in the Designer are automatically loaded when
the program starts. Since we don’t set Sound1.Source until after the program has
started, that initialization process does not take place. We have to explicitly load the
sounds when the program starts up, as shown in Figure 9-6.

Figure 9-6. Loading sounds when the app launches

Test your app. Now if you restart the app by clicking on “Connect to
Device...” in the Blocks Editor, the notes should play without delay. (If
you don’t hear anything, make sure that the media volume on your
phone is not set to mute.)

Implementing the Remaining Notes
Now that we have the first two buttons and notes implemented and working, add
the remaining six notes by going back to the Designer and uploading the sound files
3.wav, 4.wav, 5.wav, 6.wav, 7.wav, and 8.wav. Then create six new buttons, follow-
ing the same steps as you did before but setting their Text and BackgroundColor
properties as follows:

• Button3 (“E”, Pink)

• Button4 (“F”, Orange)

• Button5 (“G”, Yellow)

• Button6 (“A”, Green)

• Button7 (“B”, Cyan)

• Button8 (“C”, Blue)

Creating the Keyboard  137 

You may also want to change Button8’s TextColor property to White, as shown in
Figure 9-7, so it is more legible.

Figure 9-7. Putting the remaining buttons and sounds in the Component Designer

Back in the Blocks Editor, create Click blocks for each of the new buttons with ap-
propriate calls to PlayNote. Similarly, add each new sound file to Screen.Initialize,
as shown in Figure 9-8.

With your program getting so large, you might find it helpful to click the white minus
signs near the bottom of the “container” blocks, such as PlayNote, to minimize them
and conserve screen space.

Test your app. You should now have all the buttons, and each one
will play a different note when you click it.

138  Chapter 9:  Xylophone

Figure 9-8. Programming the button click events to correspond to all the keyboard keys

Recording and Playing Back Notes
Playing notes by pressing buttons is fun, but being able to record and play back
songs is even better. To implement playback, we will need to maintain a record of
played notes. In addition to remembering the pitches (sound files) that were played,
we must also record the amount of time between notes, or we won’t be able to
distinguish between two notes played in quick succession and two played with a
10-second silence between them.

Our app will maintain two lists, each of which will have one entry for each note that
has been played:

• notes, which will contain the names of the sound files in the order in which they
were played

• times, which will record the points in time at which the notes were played

Note. Before continuing, you may wish to review lists, which we
covered in the Presidents Quiz in Chapter 8.

Recording and Playing Back Notes  139 

We can get the timing information from a Clock component, which we will also use
to properly time the notes for playback.

Adding the Components
In the Designer, you will need to add a Clock component and Play and Reset but-
tons, which we will put in a HorizontalArrangement:

1. Drag in a Clock component. It will appear in the “Non-visible components” sec-
tion. Uncheck its TimerEnabled property because we don’t want its timer to go
off until we tell it to during playback.

2. Go to the Screen Arrangement category and drag a HorizontalArrangement
component beneath the existing button. Set its Width property to “Fill parent.”

3. From the Basic category, drag in a Button. Rename it PlayButton and set its
Text property to “Play”.

4. Drag in another Button, placing it to the right of PlayButton. Rename the new
Button to ResetButton and set its Text property to “Reset”.

The Designer view should look like Figure 9-9.

Figure 9-9. Adding components for recording and playing back sounds

140  Chapter 9:  Xylophone

Recording Notes and Times
We now need to add the correct behavior in the Blocks Editor. We will need to main-
tain lists of notes and times and add to the lists whenever the user presses a button.

1. Create a new variable by going to the Built-In tab and dragging out a def variable
block from the Definition drawer.

2. Click “variable” and change it to “notes”.

3. Open the Lists drawer and drag a make a list block out, placing it in the socket
of def notes.

This defines a new variable named “notes” to be an empty list. Repeat the steps for
another variable, which you should name “times”. These new blocks should look like
Figure 9-10.

Figure 9-10. Setting the variables to record notes

How the blocks work
Whenever a note is played, we need to save both the name of the sound file (to the
list notes) and the instant in time at which it was played (to the list times). To record
the instant in time, we will use the Clock1.Now block, which returns the current
instant in time (e.g., March 12, 2011, 8:33:14 AM), to the nearest millisecond. These
values, obtained through the Sound1.Source and Clock1.Now blocks, should be
added to the lists notes and times, respectively, as shown in Figure 9-11.

Figure 9-11. Adding the sounds played to the list

Recording and Playing Back Notes  141 

For example, if you play “Row, Row, Row Your Boat” [C C C D E], your lists would end
up having five entries, which might be:

• notes: 1.wav, 1.wav, 1.wav, 2.wav, 3.wav

• times [dates omitted]: 12:00:01, 12:00:02, 12:00:03, 12:00:03.5, 12:00:04

When the user presses the Reset button, we want the two lists to go back to their
original, empty states. Since the user won’t see any change, it’s nice to add a small
Sound1.Vibrate block so he knows that the key click was registered. Figure 9-12
shows the blocks for this behavior.

Figure 9-12. Providing feedback when the user resets the app

Playing Back Notes
As a thought experiment, let’s first look at how to implement note playback with-
out worrying about timing. We could (but won’t) do this by creating these blocks as
shown in Figure 9-13:

• A variable count to keep track of which note we’re on.

• A new procedure, PlayBackNote, which plays that note and moves on to the
next one.

• Code to run when PlayButton is pressed that sets the count to 1 and calls
PlayBackNote unless there are no saved notes.

How the blocks work
This may be the first time you’ve seen a procedure make a call to itself. While at first
glance this might seem bogus, it is in fact an important and powerful computer
science concept called recursion.

To get a better idea of how recursion works, let’s step through what happens if a user
plays three notes (1.wav, 3.wav, and 6.wav) and then presses the Play button. First,
PlayButton.Click starts running. Since the length of the list notes is 3, which is
greater than 0, count gets set to 1, and PlayBackNote is called:

142  Chapter 9:  Xylophone

1. The first time PlayBackNote is called, count = 1:

a. Sound1.Source is set to the first item in notes, which is 1.wav.

b. Sound1.Play is called, playing this note.

c. Since count (1) < the length of notes (3),

count gets incremented to 2.

PlayBackNote gets called again.

Figure 9-13. Playing back the recorded notes

2. The second time PlayBackNote is called, count = 2:

a. Sound1.Source is set to the second item in notes, which is 3.wav.

b. Sound1.Play is called, playing this note.

c. Since count (2) < the length of notes (3),

count gets incremented to 3.

PlayBackNote gets called again.

Recording and Playing Back Notes  143 

3. The third time PlayBackNote is called, count = 3:

a. Sound1.Source is set to the third item in notes, which is 6.wav.

b. Sound1.Play is called, playing this note.

c. Since count (3) is not less than the length of notes (3), nothing else happens,
and playback is complete.

Note. Although recursion is powerful, it can also be dangerous. As
a thought experiment, ask yourself what would have happened if
the programmer forgot to insert the blocks in PlayBackNote that
incremented count.

While the recursion is correct, there is a different problem with the preceding exam-
ple: almost no time passes between one call to Sound1.Play and the next, so each
note gets interrupted by the next note, except for the last one. No note (except for
the last) is allowed to complete before Sound1’s source is changed and Sound1.Play
is called again. To get the correct behavior, we need to implement a delay between
calls to PlayBackNote.

Playing Back Notes with Proper Delays
We will implement the delay by setting the timer on the clock to the amount of
time between the current note and the next note. For example, if the next note
is played 3,000 milliseconds (3 seconds) after the current note, we will set Clock1
.TimerInterval to 3,000, after which PlayBackNote should be called again. Make
the changes shown in Figure 9-14 to the body of the if block in PlayBackNote, and
create and fill in the Clock1.Timer event handler, which says what should happen
when the timer goes off.

Figure 9-14. Adding delays between the notes

144  Chapter 9:  Xylophone

How the blocks work
Let’s assume the following contents for the two lists:

• notes: 1.wav, 3.wav, 6.wav

• times: 12:00:00, 12:00:01, 12:00:04

As Figure 9-14 shows, PlayButton.Click sets count to 1 and calls PlayBackNote.

1. The first time PlayBackNote is called, count = 1:

a. Sound1.Source is set to the first item in notes, which is “1.wav”.

b. Sound1.Play is called, playing this note.

c. Since count (1) < the length of notes (3),

Clock1.TimerInterval is set to the amount of time between the first
(12:00:00) and second items in times (12:00:01): 1 second.

count gets incremented to 2.

Clock1.Timer is enabled and starts counting down.

Nothing else happens for 1 second, at which time Clock1.Timer runs, temporar-
ily disabling the timer and calling PlayBackNote.

2. The second time PlayBackNote is called, count = 2:

a. Sound1.Source is set to the second item in notes, which is “3.wav”.

b. Sound1.Play is called, playing this note.

c. Since count (2) < the length of notes (3),

Clock1.TimerInterval is set to the amount of time between the second
(12:00:01) and third items in times (12:00:04): 3 seconds.

count gets incremented to 3.

Clock1.Timer is enabled and starts counting down.

Nothing else happens for 3 seconds, at which time Clock1.Timer runs, tempo-
rarily disabling the timer and calling PlayBackNote.

3. The third time PlayBackNote is called, count = 3:

a. Sound1.Source is set to the third item in notes, which is “6.wav”.

b. Sound1.Play is called, playing this note.

c. Since count (3) is not less than the length of notes (3), nothing else happens.
Playback is complete.

Variations  145 

Variations
Here are some alternative scenarios to explore:

• Currently, there’s nothing to stop a user from clicking ResetButton during play-
back, which will cause the program to crash. (Can you figure out why?) Modify
PlayButton.Click so it disables ResetButton. To reenable it when the song is
complete, change the if block in PlayButton.Click into an ifelse block, and
reenable ResetButton in the “else” portion.

• Similarly, the user can currently click PlayButton while a song is already play-
ing. (Can you figure out what will happen if she does so?) Make it so PlayButton
.Click disables PlayButton and changes its text to “Playing…” You can reenable
it and reset the text in an ifelse block, as described in the previous bullet.

• Add a button with the name of a song, such as “Für Elise”. If the user clicks it,
populate the notes and times lists with the corresponding values, set count to
1, and call PlayBackNote. To set the appropriate times, you’ll find the Clock1
.MakeInstantFromMillis block useful.

• If the user presses a note, goes away and does something else, and comes back
hours later and presses an additional note, the notes will be part of the same
song, which is probably not what the user intended. Improve the program by (1)
stopping recording after some reasonable interval of time, such as a minute; or
(2) putting a limit on the amount of time used for Clock1.TimerInterval using
the max block from the Math drawer.

• Visually indicate which note is playing by changing the appearance of the button—
for example, by changing its Text, BackgroundColor, or ForegroundColor.

Summary
Here are some of the ideas we’ve covered in this tutorial:

• You can play different audio files from a single Sound component by changing its
Source property. This enabled us to have one Sound component instead of eight.
Just be sure to load the sounds at initialization to prevent delays (Figure 9-6).

• Lists can provide a program with memory, with a record of user actions stored in
the list and later retrieved and reprocessed. We used this functionality to record
and play back a song.

• The Clock component can be used to determine the current time. Subtracting
two time values gives us the amount of time between two events.

146  Chapter 9:  Xylophone

• The Clock’s TimerInterval property can be set within the program, such as
how we set it to the duration of time between the starts of two notes.

• It is not only possible but sometimes desirable for a procedure to make a call to
itself. This is a powerful technique called recursion. When writing a recursive pro-
cedure, make sure that there is a base case in which the procedure ends, rather
than calling itself, or the program will loop infinitely.

CHAPTER 10

MakeQuiz and TakeQuiz

The Presidents Quiz app in Chapter 8 can be customized
to build any quiz, but the customization is restricted to
App Inventor programmers. Only you, as the program-
mer, can modify the questions and answers; there is no
way for parents, teachers, or other app users to create
their own quizzes or change the quiz questions (unless
they too want to learn how to use App Inventor!).

In this chapter, you’ll build a MakeQuiz app that lets a
“teacher” create quizzes using an input form. The quiz
questions and answers will be stored in a web database
so that “students” can access a separate TakeQuiz app
and take the test. While building these two apps, you’ll
make yet another significant conceptual leap and learn
how to create apps with user-generated data that is
shared across apps and among users.

MakeQuiz and TakeQuiz are two apps that work in
tandem and allow a “teacher” to create quizzes for a
“student.” Parents can create fun trivia apps for their
children during a long road trip, grade-school
teachers can build “Math Blaster” quizzes, and college
students can build quizzes to help their study groups
prepare for a final. This chapter builds on the
Presidents Quiz in Chapter 8, so if you haven’t
completed that app, you should do so before con-
tinuing here.

You’ll design two apps, MakeQuiz for the “teacher”
(see Figure 10-1) and TakeQuiz for the “student.” With
MakeQuiz:

• The user enters questions and answers in an input
form.

• The entered question-answer pairs are displayed.
Figure 10-1. The MakeQuiz app

148  Chapter 10:  MakeQuiz and TakeQuiz

• The quiz questions and answers are stored in a database.

TakeQuiz will work similarly to the Presidents Quiz app you’ve already built. In fact,
you’ll create it using that app as a starting point. TakeQuiz will differ in that the ques-
tions asked will be those that were entered into the database using MakeQuiz.

What You’ll Learn
The Presidents Quiz was an example of an app with static data: no matter how many
times you take the quiz, the questions are always the same because they are written
as part of the app (also known as hardcoded). News apps, blogs, and social network-
ing apps like Facebook and Twitter work with dynamic data, meaning it can change
over time. Often, this dynamic information is user-generated—the app allows users to
enter, modify, and share information. With MakeQuiz and TakeQuiz, you’ll learn how
to build an app that handles user-generated data.

If you completed the Xylophone app (Chapter 9), you’ve already been introduced to
dynamic lists; in that app, the musical notes the user plays are recorded in lists. Apps
with such user-generated data are more complex, and the blocks are more abstract
because they don’t rely on predefined, static data. You define list variables, but you
define them without specific items. As you program your app, you need to envision
the lists being populated with data entered by the end user.

This tutorial covers the following App Inventor concepts:

• Input forms for allowing the user to enter information.

• Displaying items from multiple lists.

• Persistent data—MakeQuiz will save the quiz questions and answers in a web
database, and TakeQuiz will load them in from the same database.

• Data sharing—you’ll store the data in a web database using the TinyWebDB com-
ponent (instead of the TinyDB component used in previous chapters).

Getting Started
Connect to the App Inventor website and start a new project. Name it “MakeQuiz”
and set the screen’s title to “Make Quiz”. Open the Blocks Editor and connect to
your phone.

Designing the Components  149 

Designing the Components
Use the Component Designer to create the interface for MakeQuiz. When you finish,
it should look something like Figure 10-2 (there are also more detailed instructions
after the snapshot).

You can build the user interface shown in Figure 10-2 by dragging out the compo-
nents listed in Table 10-1. Drag each component from the Palette into the Viewer
and name it as specified in the table. Note that you can leave the header label names
(Label1 – Label4) as their defaults (you won’t use them in the Blocks Editor anyway).

Figure 10-2. MakeQuiz in the Component Designer

Table 10-1. All the components for the MakeQuiz app

 Component type Palette group What you’ll name it Purpose

TableArrangement Screen  
Arrangement

TableArrangement1 Format the form, including the ques-
tion and answer.

Label Basic Label1 The “Question:” prompt.

TextBox Basic QuestionText The user enters questions here.

Label Basic Label2 The “Answer:” prompt.

TextBox Basic AnswerText The user enters answers here.

Button Basic SubmitButton The user clicks this to submit a QA pair.

Label Basic Label3 Display “Quiz Questions and Answers.”

Label Basic QuestionsAnswersLabel Display previously entered QA pairs.

TinyWebDB Not ready for 
prime time

TinyWebDB1 Store data to and retrieve data from the 
database.

150  Chapter 10:  MakeQuiz and TakeQuiz

Set the properties of the components in the following way:

1. Set the Text of Label1 to “Question”, the Text of Label2 to “Answer”, and the text
of Label3 to “Quiz Questions and Answers”.

2. Set the FontSize of Label3 to 18 and check the FontBold box.

3. Set the Hint of QuestionText to “Enter a question” and the Hint of AnswerText
to “Enter an answer”.

4. Set the Text of SubmitButton to “Submit”.

5. Set the Text of QuestionsAnswersLabel to “Questions and Answers”.

6. Move the QuestionText, AnswerText, and their associated labels into
TableArrangement1.

Adding Behaviors to the Components
As with the Presidents Quiz app, you’ll first define some global variables for the
QuestionList and AnswerList, but this time you won’t provide fixed questions and
answers. Table 10-2 lists the blocks you’ll need to define the lists.

Table 10-2. Blocks for defining the question and answer lists

 Block type Drawer Purpose

def variable ("Ques-
tionList")

Definitions Define the QuestionList variable (rename it).

def variable ("An-
swerList")

Definitions Define the AnswerList variable (rename it).

make a list Lists Set up the QuestionList for new items.

make a list Lists Set up the AnswerList for new items.

The blocks should look as shown in Figure 10-3.

Figure 10-3. The lists for MakeQuiz

Note that, unlike the Presidents Quiz app, the lists are defined without items in the
slots. This is because with MakeQuiz and TakeQuiz, all data will be created by the app
user (it is dynamic, user-generated data).

Adding Behaviors to the Components  151 

Recording the User’s Entries
The first behavior you’ll build is for handling the user’s input. Specifically, when the
user enters a question and answer and clicks Submit, you’ll use add item to list
blocks to update the QuestionList and AnswerList. Table 10-3 lists the blocks you’ll
need.

Table 10-3. Blocks for recording the user’s entries

 Block type Drawer Purpose

SubmitButton.Click SubmitButton Triggered when the user clicks this button.

add items to list (2) Lists Add the data the user enters to the lists.

global QuestionList My Definitions Plug this into the “list” slot of the first add items to
list block.

QuestionText.Text QuestionText User’s entry; plug this into the “item” slot of the first add
items to list block.

global AnswerList My Definitions Plug this into the “list” slot of the second add items to
list block.

AnswerText.Text AnswerText User’s entry; plug this into the “item” slot of the second add
items to list block.

set QuestionsAnswers
Label.Text to

QuestionsAnswersLabel Display the updated lists.

make text Text Build a text object with both lists.

global QuestionList My Definitions The questions.

text (:) Text Place a colon between lists.

global AnswerList My Definitions The answers.

How the blocks work
The add items to list block appends, or adds, each item to the end of a list. As shown
in Figure 10-4, the app takes the text the user has entered in the QuestionText and
AnswerText text boxes and appends each to the corresponding list.

The add items to list blocks update the QuestionList and AnswerList variables,
but these changes are not yet shown to the user. The third row of blocks displays
these lists by concatenating them (make text) with a colon in between. By default,
App Inventor displays lists with surrounding parentheses and spaces between items
like this: (item1 item2 item3). Of course, this is not the ideal way to display the lists,
but it will allow you to test the app’s behavior for now. Later, you’ll create a more
sophisticated method of displaying the lists that shows each question-answer pair
on a separate line.

152  Chapter 10:  MakeQuiz and TakeQuiz

Figure 10-4. Adding the new entries to the lists

Test your app. On the phone, enter a question and answer and
click the SubmitButton. The app should display the single entry
in the QuestionList, a colon, and then the single entry in the
AnswerList. Add a second question and answer to make sure the
lists are being created correctly.

Blanking Out the Question and Answer
As you’ll recall from the Presidents Quiz app, when you moved on to the next ques-
tion in the list, you needed to blank out the answer results from the previous ques-
tion. In this app, when a user submits a question-answer pair, you’ll want to clear the
QuestionText and AnswerText text boxes so they’re ready for a new entry instead of
showing the previous one. To do this, add the blocks listed in Table 10-4 at the bot-
tom of the SubmitButton.Click event handler.

Table 10-4. Blocks for blanking out the question and answer text boxes

 Block type Drawer Purpose

set QuestionText.Text to QuestionText Blank out the question.

set AnswerText.Text to AnswerText Blank out the answer.

text (two blank ones) Text Replace QuestionText and AnswerText.

Adding Behaviors to the Components  153 

How the blocks work
When the user submits a new question and answer, they are added to their respec-
tive lists and displayed. At that point, the text in the QuestionText and AnswerText is
blanked out with empty text blocks, as shown in Figure 10-5. Note that you can create
an empty text block by clicking on the text within the block and pressing Delete.

Figure 10-5. Blanking out the question and answer text boxes after submission

Test your app. Add some questions and answers. Each time you
submit a pair, the QuestionText and AnswerText should be
cleared so that only the hint appears (e.g., “Enter a question”).

Displaying Question-Answer Pairs on Multiple Lines
In the app you’ve built so far, the question and answer lists are displayed separately
and with the default list display format for App Inventor. So, if you were making a
quiz on state capitals and had entered two pairs of questions and answers, it might
appear like so:

(What is the capital of California? What is the capital of New York? Sacramento Albany)

154  Chapter 10:  MakeQuiz and TakeQuiz

As you can imagine, if someone is creating a fairly long quiz, that could get pretty
messy. A better display would show each question with its corresponding answer,
with one question-answer pair per line like this:

What is the capital of California?: Sacramento
What is the capital of New York?: Albany

The technique for displaying a single list with each item on a separate line is de-
scribed in Chapter 20—you may want to read that chapter before going on.

The task here is a bit more complicated, as you’re dealing with two lists. Because of
its complexity, you’ll put the blocks for it in a procedure named displayQAs, and call
that procedure from the SubmitButton.Click event handler.

To display question-answer pairs on separate lines, you’ll need to do the following:

• Use a foreach block to iterate through each question in the QuestionList.

• Use a variable answerIndex so that you can grab each answer as you iterate
through the questions.

• Use make text to build a text object with each question and answer pair, and a
newline character (\n) separating each pair.

You’ll need the blocks listed in Table 10-5.

Table 10-5. Blocks for displaying the question-answer pairs on separate lines

Block type Drawer Purpose

to procedure ("displayQAs") Definition This is a procedure block enclosing all other blocks.

def var ("answer") Definition Temporarily store each answer.

def var ("answerIndex") Definition Keep track of which answer (and question) the user 
is on.

text ("text") Text Initialize the variable answer to text.

number (1) Math Initialize the variable answerIndex to 1.

set QuestionsAnswers
Label.Text to

My Definitions Initialize the label to empty.

text ("") Text Plug this into set QuestionsAnswers
Label.Text to.

set global answerIndex
to

My Definitions Reinitialize answerIndex each time displayQAs 
is called.

number (1) Math Reinitialize answerIndex to 1.

foreach Control Loop through the QuestionList.

Adding Behaviors to the Components  155 

Table 10-5. Blocks for displaying the question-answer pairs on separate lines

Block type Drawer Purpose

name question (Appears as an argument of 
foreach, default name is 
var.)

Rename the foreach placeholder variable to 
question.

global QuestionList My Definitions Plug this into in the “list” slot of foreach.

set answer to My Definitions Set this variable each time in the foreach.

select list item Lists Select from the list AnswerList.

global AnswerList My Definitions Plug this into the “list” slot of select list item.

global answerIndex My Definitions Plug this into the “index” slot of select list item.

set global answerIndex
to

My Definitions Increment the index on each iteration through the 
loop.

+ Math Increment answerIndex.

global answerIndex My Definitions Plug this into +.

number (1) Math Plug this into +.

set QuestionsAnswers
Label.Text to

QuestionsAnswersLabel Display the QAs.

make text Text Build each QA pair.

QuestionsAnswers
Label.Text

QuestionsAnswersLabel As we iterate, add each new pair to the previous ones.

text ("\n") Text Place a newline between pairs.

value question My Definitions This is the placeholder of the foreach; it’s the 
current question we’re processing.

text (":") Text Place a colon between the question and answer.

global answer My Definitions The current answer.

How the blocks work
The displayQAs block encapsulates all of the blocks for displaying the data, as shown
in Figure 10-6. By using a procedure, we won’t have to have the display blocks more
than once in the app, and we can just call displayQAs when we need to display the
lists.

(continued)

156  Chapter 10:  MakeQuiz and TakeQuiz

Figure 10-6. The displayQAs procedure

The foreach only allows you to iterate through one list. In this case, there are two
lists, and you need to select each answer as you proceed through the questions. To
accomplish this, we’ll use an index variable, as we did with the currentQuestion
Index in the Presidents Quiz tutorial in Chapter 8. In this case, the index variable,
answerIndex, is used to track the position in the AnswerList as the foreach goes
through the QuestionList.

answerIndex is set to 1 before the foreach begins. Within the foreach, answerIndex
selects the current answer from the AnswerList, and then it is incremented. On each
iteration of the foreach, the current question and answer are concatenated to the
end of the QuestionsAnswersLabel.Text property, with a colon between them.

Calling the new procedure
You now have a procedure for displaying the question-answer pairs, but it won’t
help unless you call it when you need it. Modify the SubmitButton.Click event
handler by calling displayQAs instead of displaying the lists with the simple set
QuestionsAnswersLabel.Text to block. The updated blocks should appear as
shown in Figure 10-7.

Adding Behaviors to the Components  157 

Figure 10-7. Calling the displayQAs procedure from SubmitButton.Click

Test your app. On the phone, add some more question-answer pairs.
The display should now show each question with its corresponding
answer, with each question-answer pair on a separate line.

Storing the Questions and Answers in a Database
So far, you’ve created an app that puts the entered questions and answers into a
list. But what happens if the quiz maker closes the app? If you’ve completed the
“No Texting While Driving” app (Chapter 4) or the “Android, Where’s My Car?” app
(Chapter 7), you know that if you don’t store the data in a database, it won’t be there
when the user closes and reopens the app. Storing the data persistently will allow the
quiz maker to view or edit the latest update of the quiz each time the app is opened.
Persistent storage is also necessary because the TakeQuiz app needs access to the
data as well.

You’re already familiar with using the TinyDB component to store and retrieve data in
a database. But in this case, you’ll use the TinyWebDB component instead. Whereas
TinyDB stores information directly on a phone, TinyWebDB stores data in databases
that live on the Web.

What about your app design would merit using an online database instead of one
stored on a person’s phone? The key issue here is that you’re building two apps that
both need access to the same data—if the quiz maker stores the questions and
answers on her phone, the quiz takers won’t have any way of getting to the data for

158  Chapter 10:  MakeQuiz and TakeQuiz

their quiz! Because TinyWebDB stores data on the Web, the quiz taker can access the
quiz questions and answers on a different device than the quiz maker’s. (Online data
storage is often referred to as the cloud.)

Here’s the general scheme for making list data—like the questions and
answers—persistent:

• Store a list to the database each time a new item is added to it.

• When the app launches, load the list from the database into a variable.

Start by storing the QuestionList and AnswerList in the database each time
the user enters a new pair. You’ll add the blocks shown in Table 10-6 to the
SubmitButton.Click event handler.

Table 10-6. The blocks for storing the data to the database

 Block type Drawer Purpose

TinyWebDB1
.StoreValue

TinyWebDB1 Store questions in the database.

text ("questions") Text Plug in “questions” as the tag of StoreValue.

global Question
List

My Definitions Plug this into the “value” slot of StoreValue.

TinyWebDB1
.StoreValue

TinyWebDB1 Store answers in the database.

text ("answers") Text Plug in “answers” as the tag of StoreValue.

global AnswerList My Definitions Plug this into the “value” slot of StoreValue.

How the blocks work
The TinyWebDB1.StoreValue blocks store data in a web database. StoreValue has
two arguments: the tag that identifies the data and the value that is the actual data
you want to store. As shown in Figure 10-8, the QuestionList is stored with a tag of
“questions” while the AnswerList is stored with a tag of “answers.”

However, for your app, you should use tags that are more distinctive than “questions”
and “answers” (e.g., “DavesQuestions” and “DavesAnswers”). This is important because
you’re using the default web database for App Inventor, so your data (the list of ques-
tions and answers) can be overwritten by others, including other people following
this tutorial.

Note that the default web service is shared among programmers and apps, so it is in-
tended only for testing. When you’re ready to deploy your app with real users, you’ll
want to set up your own private database service. Fortunately, doing so is straight-
forward and requires no programming (see Chapter 22).

Adding Behaviors to the Components  159 

Figure 10-8. Storing the questions and answers in the database

Test your app. Enter a question and answer and click Submit. To
check if your data was stored in the database as desired, open a
browser and enter the URL http://appinvtinywebdb.appspot.com
in the address bar. The page that appears is the administrative
interface to the database and includes a table of tag-value pairs. If
you search for the tag you used in the StoreValue blocks (e.g., “ques-
tions”), you can check the value stored with it. You can also click on
the “/getvalue” link and enter your tag to find its value. Does your
data appear?

160  Chapter 10:  MakeQuiz and TakeQuiz

Loading Data from the Database
One reason we need to store the questions and answers in a database is so the per-
son creating the quiz can close the app and relaunch it at a later time without losing
the questions and answers previously entered. (We also do it so the quiz taker can
access the questions, but we’ll cover that later.) Let’s program the blocks for loading
the lists back into the app from the web database each time the app is restarted.

As we’ve covered in earlier chapters, to specify what should happen when an app
launches, you program the Screen.Initialize event handler. In this case, the app
needs to request two lists from the TinyWebDB web database—the questions and the
answers—so the Screen1.Initialize will make two calls to TinyWebDB .GetValue.

You’ll need the blocks listed in Table 10-7.

Table 10-7. Screen.Initialize blocks for retrieving database data

 Block type Drawer Purpose

Screen1.Initialize Screen1 Triggered when the app begins.

TinyWebDB .Get
Value (2)

TinyWebDB Request the stored QuestionList and AnswerList.

text ("questions") Text Instead of “questions,” use the tag you used to store the questions.

text ("answers") Text Instead of “answers,” use the tag you used to store the questions.

How the blocks work
The TinyWebDB.GetValue blocks, shown in Figure 10-9, work differently than
TinyDB.GetValue, which returns a value immediately. TinyWebDB.GetValue only
requests the data from the web database; it doesn’t immediately receive a value.
Instead, when the data arrives from the web database, a TinyWebDB.GotValue
event is triggered. You must also program another event handler to process the data
that is returned.

Figure 10-9. Requesting the lists from the database when the app opens

When the TinyWebDB.GotValue event occurs, the data requested is contained in an
argument named valueFromWebDB. The tag you requested is contained in the argu-
ment tagFromWebDB.

Adding Behaviors to the Components  161 

In this app, since two different requests are made for the questions and answers,
GotValue will be triggered twice. To avoid putting questions in your AnswerList
or vice versa, your app needs to check the tag to see which request has arrived,
and then put the value returned from the database into the corresponding list
(QuestionList or AnswerList). Now you’re probably realizing how useful those
tags really are!

You’ll need the blocks listed in Table 10-8 for the GotValue event handler.

Table 10-8. Blocks for TinyWebDB.GotValue

 Block type Drawer Purpose

TinyWebDB.GotValue TinyWebDB Triggered when the data arrives.

if Control Check if the database has any data.

is a list? List If data is a list, it’s non-empty.

value valueFrom
WebDB

My Definitions The argument holding the data returned from the database.

ifelse Control Ask which GetValue request arrived.

= Math Compare tagFromWebDB to “questions.”

text ("questions") Text This is the tag that was used to store QuestionList.

value tagFromWebDB My Definitions An argument of GotValue; specifies which request.

set global Question
List to

My Definitions If tagFromWebDB is “questions,” this list will be set.

set global Answer
List to

My Definitions If tagFromWebDB is not “questions,” this list will be set.

value valueFrom
WebDB (2)

My Definitions Hold the value returned from the database.

if Control Check if both the lists are loaded before displaying.

= Math Compare the lengths of the lists.

length of list (2) Lists Check if the lengths of the lists are the same.

global QuestionList My Definitions Plug this into one of the length of list blocks.

global AnswerList My Definitions Plug this into the other length of list block.

call displayQAs My Definitions Display the newly loaded questions and answers.

How the blocks work
The app calls TinyWebDB1.GetValue twice: once to request the stored
QuestionList and once to request the stored AnswerList. When the data arrives
from the web database from either request, the TinyWebDB1.GotValue event is
triggered, as shown in Figure 10-10.

162  Chapter 10:  MakeQuiz and TakeQuiz

Figure 10-10. GotValue is triggered when the data arrives from the Web

The valueFromWebDB argument of GotValue holds the data returned from the data-
base request. We need the outer if block in the event handler because the database
will return an empty text (“”) in valueFromWebDB if it’s the first time the app has been
used and there aren’t yet questions and answers. By asking if the valueFromWebDB
is a list?, you’re making sure there is some data actually returned. If there isn’t any
data, you’ll bypass the blocks for processing it.

If data is returned (is a list? is true), the blocks go on to check which request has
arrived. The tag identifying the data is in tagFromWebDB: it will be either “questions”
or “answers.” If the tag is “questions,” the valueFromWebDB is put into the variable
QuestionList. Otherwise (else), it is placed in the AnswerList. (If you used tags
other than “questions” and “answers,” check for those instead.)

We only want to display the lists after both have arrived (GotValue has been trig-
gered twice). Can you think of how you’d know for sure that you have both lists
loaded in from the database? These blocks use an if test to check if the lengths of the
lists are the same, as this can only be true if both have been returned. If they are, the
handy displayQAs procedure you wrote earlier is called to display the loaded data.

Test your app. Restart the app by clicking “Connect to Device...”
in the Blocks Editor. When the app initializes, it should display the
previously entered questions and answers. If you close the app and
restart, the previous quiz should still appear.

The Complete App: MakeQuiz   163 

The Complete App: MakeQuiz
Figure 10-11 illustrates the final blocks for the MakeQuiz app.

Figure 10-11. The blocks for MakeQuiz

164  Chapter 10:  MakeQuiz and TakeQuiz

TakeQuiz: An App for Taking the Quiz in the Database
You now have a MakeQuiz app that will store a quiz in a web database. Building
TakeQuiz, the app that dynamically loads the quiz, is simpler. It can be built with a
few modifications to the Presidents Quiz you completed in Chapter 8 (if you have not
completed that tutorial, do so now before continuing).

Begin by opening your Presidents Quiz app, choosing Save As, and naming the new
project “TakeQuiz”. This will leave your Presidents Quiz app unmodified but allow you
to use its blocks as the basis for TakeQuiz.

Then make the following changes in the Designer:

1. This version of MakeQuiz/TakeQuiz does not display images with each ques-
tion, so first remove the references to images from the TakeQuiz app. In the
Component Designer, choose each image from the Media palette and delete it.
Then delete the Image1 component, which will remove all references to it from
the Blocks Editor.

2. Since TakeQuiz will work with database data, drag a TinyWebDB component into
the app.

3. Because you don’t want the user to answer or click the NextButton until the
questions are loaded, uncheck the Enabled property of the AnswerButton and
NextButton.

TakeQuiz: Modifying the Blocks to Load the
Quiz from the Database
Now modify the blocks so that the quiz given to the user is loaded from the database.
First, since there are no fixed questions and answers, remove all the actual question
and answer text blocks from the make a list blocks within the QuestionList and
AnswerList. The resulting blocks should appear as shown in Figure 10-12.

Figure 10-12. The question and answer lists now start empty

You can also completely delete the PictureList; this app won’t deal with images. Now
modify your Screen1.Initialize so that it calls TinyWebDB.GetValue twice to load the
lists, just as you did in MakeQuiz. The blocks should look as they do in Figure 10-13.

TakeQuiz: Modifying the Blocks to Load the Quiz from the Database  165 

Figure 10-13. Requesting the questions and answers from the web database

Finally, drag out a TinyWebDB.GotValue event handler. This event handler should
look similar to the one used in MakeQuiz, but here you want to show only the first
question and none of the answers. Try making these changes yourself first, and then
take a look at the blocks in Figure 10-14 to see if they match your solution.

Figure 10-14. GotValue handles the data that arrives from the Web

How the Blocks Work
When the app begins, Screen1.Initialize is triggered and the app requests the ques-
tions and answers from the web database. When each request arrives, the TinyWebDB
.GotValue event handler is triggered. The app first checks if there is indeed data in
valueFromWebDB using is a list?. If it finds data, the app asks which request has come
in, using tagFromWebDB, and places the valueFromWebDB into the appropriate list. If the
QuestionList is being loaded, the first question is selected from QuestionList and
displayed. If the AnswerList is being loaded, the AnswerButton and NextButton are
enabled so the user can begin taking the test.

166  Chapter 10:  MakeQuiz and TakeQuiz

Test your app. Restart the app by clicking “Connect to Device...” in
the Blocks Editor. Does the first question from your MakeQuiz quiz
appear? Can you take a quiz just as you did with the Presidents Quiz
(except for the pictures)?

The Complete App: TakeQuiz
Figure 10-15 illustrates the final blocks for TakeQuiz.

Variations
Once you get MakeQuiz and TakeQuiz working, you might want to explore some
variations. For example:

• Allow the quiz maker to specify an image for each question. Of course, you (the
app developer) can’t preload these images, and there is currently no way for an
app user to do it. So the images will need to be URLs from the Web, and the quiz
maker will need to enter these URLs as a third item in the MakeQuiz form. Note
that you can set the Picture property of an Image component to a URL.

• Allow the quiz maker to delete items from the questions and answers. You can
let the user choose a question using the ListPicker component, and you can
remove an item with the remove list item block (remember to remove from
both lists and update the database). For help with ListPicker and list deletion, see
Chapter 19.

• Let the quiz maker name the quiz. You’ll need to store the quiz name under a
different tag in the database, and you’ll need to load the name along with the
quiz in TakeQuiz. Once you’ve loaded the name, use it to set the Screen.Title
property so that it appears when the user takes a quiz.

• Allow multiple, named quizzes to be created. You’ll need a list of quizzes, and you
can use each quiz name as (part of) the tag for storing its questions and answers.

Variations  167 

Figure 10-15. The blocks for TakeQuiz

168  Chapter 10:  MakeQuiz and TakeQuiz

Summary
Here are some of the concepts we’ve covered in this chapter:

• Dynamic data is information input by the app’s user or loaded in from a data-
base. A program that works with dynamic data is more abstract. For more infor-
mation, see Chapter 19.

• You can store data persistently in a web database with the TinyWebDB
component.

• You retrieve data from a TinyWebDB database by requesting it with TinyWebDB
.GetValue. When the web database returns the data, the TinyWebDB.GotValue
event is triggered. In the TinyWebDB.GotValue event handler, you can put the
data in a list or process it in some way.

• TinyWebDB data can be shared among multiple phones and apps. Fore more
information on (web) databases, see Chapter 22.

CHAPTER 11

Broadcast Hub

FrontlineSMS (http://www.frontlinesms.com) is
a software tool used in developing countries to
monitor elections, broadcast weather changes,
and connect people who don’t have access to
the Web but do have phones and mobile con-
nectivity. It is the brainchild of Ken Banks, who
has probably done more to help people using
mobile technology than any other human
alive.

FrontlineSMS runs on a computer with a phone
plugged into it. The computer and plugged-in
phone serve as a hub for SMS (short message
service) text communication within a group.
People who don’t have Internet access can send
in a special code to join the group, after which
they receive broadcast messages from the hub.
For places with no Internet access, the broad-
cast hub can serve as a vital connection to the
outside world.

With App Inventor, you can create your own
SMS-processing app. The cool thing is that the people who use your app don’t need to
have an Android phone. Your app will run on an Android device, but your app users can
interface with it through SMS using any phone, smart or not so smart. Your app will still
have a graphical user interface (GUI) as well, but that GUI will be reserved for the admin-
istrator who monitors the activity via the Android app you’re about to build.

In this chapter, you’ll create a hub that works similarly to FrontlineSMS but runs on
an Android phone. Having the hub itself on a mobile device means the administrator
can be on the move, something that is especially important in controversial situations
like election monitoring and healthcare negotiations.

170  Chapter 11:  Broadcast Hub

Your broadcast hub will be for the fictitious FlashMob Dance Team (FMDT), a group
that uses the hub to organize flash mob dances anywhere, anytime. People will reg-
ister with the group by texting “joinFMDT” to the hub, and anyone who is registered
can broadcast messages to everyone else in the group.

Your app will process received text messages in the following manner:

1. If the text message is sent from someone not yet in the broadcast list, the app
responds with a text that invites him to join the broadcast list and lets him know
the code.

2. If the text message “joinFMDT” is received, the app adds the sender to the broad-
cast list.

3. If the text message is sent from a number already in the broadcast list, the mes-
sage is broadcast to all numbers in the list.

You’ll build this app one piece of functionality at a time, starting with the first autore-
sponse message that invites people to join. By the time you complete this app, you’ll
have a pretty good idea of how to write apps utilizing SMS text as the user interface.

What You’ll Learn
The tutorial covers the following App Inventor concepts, some of which you’re likely
familiar with by now:

• The Texting component for sending texts and processing received texts.

• List variables—in this case, to keep track of the list of phone numbers.

• The foreach block to allow an app to repeat operations on a list of data. In this
case, you’ll use foreach to broadcast messages to the list of phone numbers.

• The TinyDB component to store data persistently. This means that if you close
the app and then relaunch it, the list of phone numbers will still be there.

Getting Started
You’ll need a phone that can accept and send SMS texts to test this app, as the
emulator that comes with App Inventor isn’t set up for this. You’ll also need to recruit
some friends to send you texts in order to fully test the app.

Connect to the App Inventor website and start a new project. Name it “BroadcastHub”
and also set the screen’s title to “Broadcast Hub”. Open the Blocks Editor and connect to
the phone.

Designing the Components  171 

Designing the Components
Broadcast Hub facilitates communication between mobile phones. Those phones do
not need to have the app installed, or even be smartphones. So, in this case, you’re
not building an interface for your app’s users, but instead for the group administrator.

The user interface for the administrator is simple: it displays the current broadcast
list—that is, the list of phone numbers that have registered for the service—and all of
the texts it receives and broadcasts.

To build the interface, add the components listed in Table 11-1.

Table 11-1. User interface components for Broadcast Hub

Component type Palette group What you’ll name it Purpose

Label Basic Label1 This is the header above the list of phone numbers.

Label Basic BroadcastListLabel Display the phone numbers that are registered.

Label Basic Label2 This is the header above the log information.

Label Basic LogLabel Display a log of the texts received and broadcast.

Texting Social Texting1 Process the texts.

TinyDB Basic TinyDB1 Store the list of registered phone numbers.

As you add the components, set the following properties:

1. Set the Width of each label to “Fill parent” so that it spans the phone horizontally.

2. Set the FontSize of the header labels (Label1 and Label2) to 18 and check their
FontBold boxes.

3. Set the Height of BroadcastListLabel and LogLabel to 200 pixels. They’ll show
multiple lines.

4. Set the Text property of BroadcastListLabel to “Broadcast List…”.

5. Set the Text property of LogLabel to blank.

Figure 11-1 shows the app layout in the Component Designer.

172  Chapter 11:  Broadcast Hub

Figure 11-1. Broadcast Hub in the Component Designer

Adding Behaviors to the Components
The activity for Broadcast Hub is not triggered by the user entering information or
clicking a button, but rather by texts coming in from other phones. To process these
texts and store the phone numbers that sent them in a list, you’ll need the following
behaviors:

• When the text message is sent from someone not already in the broadcast list,
the app responds with a text that invites the sender to join.

• When the text message “joinFMDT” is received, register the sender as part of the
broadcast list.

• When the text message is sent from a number already in the broadcast list, the
message is broadcast to all numbers in the list.

Let’s start by creating the first behavior: when you receive a text, send a message
back to the sender inviting her to register by texting “joinFMDT” back to you. You’ll
need the blocks listed in Table 11-2.

Adding Behaviors to the Components  173 

Table 11-2. Blocks for adding the functionality to invite people to the group via text

Block type Drawer Purpose

Texting1.Message
Received

Texting1 Triggered when the phone receives a text.

set Texting1.Phone
Number to

Texting1 Set the number for the return text.

value number My Definitions The argument of MessageReceived. This is the phone number of 
the sender.

set Texting1.Message Texting1 Set the invite message to send.

text ("To join this broadcast 
list, text 'joinFMDT' to this 
number")

Text The invite message.

Texting1.SendMessage Texting1 Send it!

How the Blocks Work
Based on the work you did in the No Texting While Driving app in Chapter 4, these
blocks should look familiar. Texting1.MessageReceived is triggered when the
phone receives any text message. As shown in Figure 11-2, the blocks within the
event handler set the PhoneNumber and Message of the Texting1 component and
then send the message.

Figure 11-2. Sending the invite message back after receiving a text

Test your app. You’ll need a second phone to test this behavior;
you don’t want to text yourself, as it could loop forever! If you don’t
have another phone, you can register with Google Voice or a similar
service and send SMS texts from that service to your phone. From
the second phone, send the text “hello” to the phone running the
app. The second phone should then receive a text that invites it to
join the group.

174  Chapter 11:  Broadcast Hub

Adding Someone to the Broadcast List
Now let’s create the blocks for the second behavior: when the text message “joinFMDT”
is received, add the sender to the broadcast list. First, you’ll need to define a list vari-
able, BroadcastList, to store the phone numbers that register. From Definitions, drag
out a def var block and name it “BroadcastList”. Initialize it to an empty list with a
make a list block from the Lists drawer, as shown in Figure 11-3 (we’ll add the func-
tionality to build this list shortly).

Figure 11-3. The BroadcastList variable for storing the list of registered numbers

Next, modify the Texting1.MessageReceived event handler so that it adds the
sender’s phone number to the BroadcastList if the message received is “joinFMDT.”
You’ll need an ifelse block—which you used in MakeQuiz in Chapter 10—within your
event handler, and an add item to list block to add the new number to the list. The
full set of blocks you’ll need is listed in Table 11-3. After you add the number to the
list, display the new list in the BroadcastListLabel.

Table 11-3. Blocks for checking a text message and adding the sender to the broadcast list

 Block type Drawer Purpose

ifelse Control Depending on the message received, do different things.

= Math Determine whether messageText is equal to “joinFMDT.”

value messageText My Definitions Plug this into the = block.

text ("joinFMDT") Text Plug this into the = block.

add items to list Lists Add the sender’s number to BroadcastList.

global BroadcastList My Definitions The list.

value number My Definitions Plug this in as an item of add items to list.

set BroadcastList
Label.Text to

BroadcastListLabel Display the new list.

global BroadcastList My Definitions Plug this in to set the BroadcastListLabel.Text to block.

set Texting1.Message
to

Texting1 Prepare Texting1 to send a message back to the sender.

text ("Congrats, you…") Text Congratulate the sender for joining the group.

How the blocks work
The first row of blocks shown in Figure 11-4 sets Texting1.PhoneNumber to the
phone number of the message that was just received; we know we’re going to
respond to the sender, so this sets that up. The app then asks if the messageText
was the special code, “joinFMDT.” If so, the sender’s phone number is added to the

Adding Behaviors to the Components  175 

BroadcastList, and a congratulations message is sent. If the messageText is some-
thing other than “joinFMDT,” the reply message repeats the invitation message. After
the ifelse block, the reply message is sent (bottom row of the blocks).

Figure 11-4. If the incoming message is “joinFMDT”, add the sender to BroadcastList

Test your app. From a second phone, send the text message
“joinFMDT” to the phone running the app. You should see the
phone number listed in the user interface under “Registered Phone
Numbers.” The second phone should also receive the Congrats mes-
sage. Try sending a message other than “joinFMDT” as well to check
if the invite message is still sent correctly.

Broadcasting Messages
Next, you’ll add the behavior so that the app broadcasts received messages to the
numbers in BroadcastList, but only if the message arrives from a number already
stored in that list. This additional complexity will require more control blocks, includ-
ing another ifelse and a foreach. You’ll need an additional ifelse block to check if the
number is in the list, and a foreach block to broadcast the message to each number

176  Chapter 11:  Broadcast Hub

in the list. You’ll also need to move the ifelse blocks from the previous behavior and
slot them into the “else” part of the new ifelse. All the additional blocks you’ll need
are listed in Table 11-4.

Table 11-4. Blocks for checking if the sender is in the group already

Block type Drawer Purpose

ifelse Control Depending on whether the sender is already in the list, do differ-
ent things.

is in list? Lists Check to see if something is in a list.

global BroadcastList My Definitions Plug this into the “list” slot of is in list?.

value number My Definitions Plug this into the “thing” slot of is in list?.

foreach Control Repeatedly send out a message to all members in the list.

global BroadcastList My Definitions Plug this into the “list” slot of foreach.

set Texting1.Message
to

Texting1 Set the message.

value messageText My Definitions The message that was received and will be broadcast.

set Texting1.Phone-
Number to

Texting1 Set the phone number.

value var My Definitions Hold the current item of the BroadcastList; it’s a (phone) 
number.

How the blocks work
The app has become complex enough that it requires a nested ifelse block, as shown
in Figure 11-5. A nested ifelse block is one slotted within the “if” or “else” part of
another, outer ifelse. In this case, the outer ifelse branch checks whether the phone
number of the received message is already in the list. If it is, the message is relayed to
everyone in the list. If the number is not in the list, then the nested test is performed:
the blocks check if the messageText is equal to “joinFMDT” and branches one of two
ways based on the answer.

In general, if and ifelse blocks can be nested to arbitrary levels, giving you the power
to program increasingly complex behaviors (see Chapter 18 for more information on
conditional blocks).

The message is broadcast using a foreach (within the outer then clause). The
foreach loops through and sends the message to each item in the BroadcastList.
As the foreach repeats, each succeeding phone number from the BroadcastList is
stored in var (var is a variable placeholder for the current item being processed in
the foreach). The blocks within the foreach set Texting.PhoneNumber to the current
item var and then send the message. For more information on how foreach works,
see Chapter 20.

Adding Behaviors to the Components  177 

Figure 11-5. Now we check if the sender is already in the group and broadcast the message if so

Test your app. First, have two different phones register by texting
“joinFMDT” to the phone running the app. Then, text another mes-
sage from one of the phones. Both phones should receive the text
(including the one that sent it).

178  Chapter 11:  Broadcast Hub

Cleaning Up Your List Display
The app can now broadcast messages, but the user interface for the app admin-
istrator needs some work. First, the list of phone numbers is displayed in an inel-
egant way. Specifically, when you place a list variable into a label, it displays the
list with spaces between the items, fitting as much as possible on each line. So the
BroadcastListLabel might show the BroadcastList like this:

(+1415111-1111 +1415222-2222 +1415333-3333 +1415444-4444)

To improve this formatting, create a procedure displayBroadcastList using the blocks
listed in Table 11-5. This procedure displays the list with each phone number on a
separate line. Be sure to call the procedure from below the add items to list block so
that the updated list is displayed.

Table 11-5. Blocks to clean up the display of phone numbers in your list

Block type Drawer Purpose

to procedure ("displayBroadcast 
List")

Definitions Create the procedure (do not choose procedure
WithResult).

set BroadcastListLabel
.Text to

BroadcastListLabel Display the list here.

text ("") Text Click text and then click Delete to create an empty text 
object.

foreach Control Iterate through the numbers.

name pnumber in the foreach Name the foreach variable “pnumber”. This is the 
current item as iteration proceeds.

global BroadcastList My Definitions Plug this into the “in list” slot of foreach.

set BroadcastListLabel
.Text to

BroadcastListLabel Modify this with each of the numbers.

make text Text Build a text object from multiple parts.

BroadcastListLabel.Text BroadcastListLabel Add this to the label on each iteration of foreach.

text ("\n") Text Add a newline character so that the next number is on 
the next line.

value pnumber My Definitions The current number from the list.

How the blocks work
The foreach in displayBroadcastList successively adds a phone number to the
end of the label, as shown in Figure 11-6, placing a newline character (\n) between
each item to place each number on a new line.

Adding Behaviors to the Components  179 

Figure 11-6. Displaying the phone numbers with a newline between each

Of course, this displayBroadcastList procedure will not do anything unless you
call it. Place a call to it in the Texting1.MessageReceived event handler, right below
the call to add item to list. The call should replace the blocks that simply set the
BroadcastListLabel.Text to BroadcastList. The call displayBroadcastList block
can be found in My Definitions.

Figure 11-7 shows how the relevant blocks within the Texting1.MessageReceived
event handler should look.

Figure 11-7. Calling the displayBroadcastList procedure

For more information on using foreach to display a list, see Chapter 20. For more
information about creating and calling procedures, see Chapter 21.

180  Chapter 11:  Broadcast Hub

Test your app. Restart the app to clear the list and then have at
least two different phones register (again). Do the phone numbers
appear on separate lines?

Logging the Broadcasted Texts
When a text is received and broadcast to the other phones, the app should log
that occurrence so the administrator can monitor the activity. In the Component
Designer, you added the label LogLabel to the user interface for this purpose. Now,
you’ll code some blocks that change LogLabel each time a new text arrives.

You need to build a text that says something like “message from +1415111–2222 was
broadcast.” The number +1415111–2222 is not fixed data—instead, it is the value of
the argument number that comes with the MessageReceived event. So, to build the
text, you’ll concatenate the first part, “message from”, with a value number block
and finally with the last part of the message, the text “broadcast.”

As you’ve done in previous chapters, use make text to concatenate the parts using
the blocks listed in Table 11-6.

Table 11-6. Blocks to build your log of broadcasted messages

Block type Drawer Purpose

set LogLabel
.Text to

LogLabel Display the log here.

make text Text Build a text object out of multiple parts.

text ("message from") Text This is the report message.

value number My Definitions The sender’s phone number.

text ("broadcast\n") Text Add the last part of “message from 111–2222 broadcast” and include newline.

LogLabel.Text LogLabel Add a new log to the previous ones.

How the blocks work
After broadcasting the received message to all of the numbers in BroadcastList,
the app now modifies the LogLabel to add a report of the just-broadcasted text, as
shown in Figure 11-8. Note that now we add the message to the beginning of the list
instead of the end, so the more recent message sent to the group shows up at the top.

Adding Behaviors to the Components  181 

Figure 11-8. Adding a new broadcast message to the log

The make text block creates new entries of the form:

message from: 111-2222 broadcast

Each time a text is broadcast, the log entry is prepended to (added to the front of) the
LogLabel.Text so that the most recent entries will appear on top. The way you orga-
nize the make text block determines the ordering of the entries. In this case, the new
message is added with the top three slots of make text, and LogLabel.Text—which
holds the existing entries—is plugged into the last slot.

The “\n” in the text “broadcast\n” is the newline character that displays each log entry
on a separate line:

message from: 1112222 broadcast
message from: 555-6666 broadcast

For more information about using foreach to display a list, see Chapter 20.

Storing the BroadcastList in a Database
The app works great so far, but if you’ve completed some of the earlier tutorials,
you’ve probably guessed that there’s a problem: if the administrator closes the app
and relaunches it, the broadcast list will be lost and everyone will have to reregister.
To fix this, you’ll use the TinyDB component to store and retrieve the BroadcastList
to and from a database.

182  Chapter 11:  Broadcast Hub

You’ll use a similar scheme to the one we used in the MakeQuiz app (Chapter 10):

• Store the list to the database each time a new item is added.

• When the app launches, load the list from the database into a variable.

Start by coding the blocks listed in Table 11-7 to store the list in the database. With
the TinyDB component, a tag is used to identify the data and distinguish it from
other data stored in the database. In this case, you can tag the data as “broadcastList.”
You’ll add the blocks in the Texting1.MessageReceived event, under the add items
to list block.

Table 11-7. Blocks to store the list with TinyDB

Block type Drawer Purpose

TinyDB1.Store
Value

TinyDB1 Store the data in the database.

text ("broadcastList") Text Plug this into the “tag” slot of Store
Value.

global Broadcast
List

My Definitions Plug this into the “value” slot of Store
Value.

How the blocks work
When a “joinFMDT” text comes in and the new member’s phone number is added to
the list, TinyDB1.StoreValue is called to store the BroadcastList to the database.
The tag (a text object named “broadcastList”) is used so that you can later retrieve
the data. As shown in Figure 11-9, the value that gets called by StoreValue is the
variable BroadcastList.

Figure 11-9. Calling TinyDB to store the BroadcastList

Adding Behaviors to the Components  183 

Loading the BroadcastList from a Database
Now add the blocks listed in Table 11-8 for loading the list back in each time the app
launches. When the app begins, the Screen1.Initialize event is triggered, so your
blocks will go in that event handler. You’ll call TinyDB.GetValue, using the same tag
you used to store the list (“broadcastList”). At this point, as we’ve done in previous
chapters that work with databases, we have to check if there is actually any data
being returned. In this case, we’ll check if the returned value is a list, because it won’t
be if there isn’t any data in the list yet.

How the blocks work
When the app begins, the Screen1.Initialize event is triggered. The blocks shown in
Figure 11-10 first request the data from the database with TinyDB1.GetValue. The
returned data is placed in the variable valueFromDB, a variable defined to temporarily
hold it.

Table 11-8. Blocks to load the broadcast list back into the app when it launches

Block type Drawer Purpose

def variable ("value-
FromDB")

Definition A temporary variable for holding database data and checking it.

text ("text") Text An initial value for valueFromDB.

Screen1.Initialize Screen1 Triggered when the app launches.

set global valueFrom
DB to

My Definitions Put the returned value here temporarily.

TinyDB1.GetValue TinyDB1 Request the data from the database.

text ("broadcastList") Text Plug this into the “tag” slot of GetValue.

if Control Check if the database had the data.

is a list? List If the data returned is a list, we know it wasn’t empty.

global valueFromDB My Definitions Plug this into is a list?.

set global Broadcast
List to

My Definitions Set this to the value returned from the database.

call displayBroadcast
List

My Definitions After loading data, display it.

184  Chapter 11:  Broadcast Hub

Figure 11-10. Loading the BroadcastList from the database

We need the if block in the event handler because the database will return an empty
text (“”) if it’s the first time the app has been used and there isn’t yet a broadcast list.
By asking if the valueFromDB is a list, you’re making sure there is some data actu-
ally returned. If there isn’t, you’ll bypass the blocks that transfer the returned data
(valueFromDB) into the variable BroadcastList and the blocks to display that data.

Test your app. You can’t use live testing for apps that modify the da-
tabase because each time you click “Connect to Device,” the database
starts out empty. So, to test the database storage and the Screen
.Initialize event handler, you’ll need to package and download the
app to a phone (you can download an app by choosing “Package
for Phone”→“Download to Connected Phone” in the Component
Designer). Once you’ve downloaded your app, use your second and
third test phones to send a text to join the group and then close the
app on your original phone. If the numbers are still listed when you
relaunch the app, then the database part is working.

The Complete App: Broadcast Hub
Figure 11-11 illustrates the blocks in the completed Broadcast Hub app.

The Complete App: Broadcast Hub  185 

Figure 11-11. The complete app

186  Chapter 11:  Broadcast Hub

Variations
After you’ve celebrated building such a complex app, you might want to explore
some variations. For example:

• The app broadcasts each message to everyone, including the phone that sent
the message. Modify this so that the message is broadcast to everyone but the
sender.

• Allow client phones to remove themselves from the list by texting “quitabc” to
the app. You’ll need a remove from list block.

• Let the hub administrator add and remove numbers from the broadcast list
through the user interface.

• Let the hub administrator specify numbers that should not be allowed into the list.

• Customize the app so that anyone can join to receive messages, but only the
administrator can broadcast messages.

• Customize the app so that anyone can join to receive messages, but only a
fixed list of phone numbers can broadcast messages to the group (this is how
the Helsinki event app worked; see http://appinventorblog.com/2010/08/25/
success-story-from-helsinki/).

• The app stores the broadcast list persistently, but not the log. Each time you
close the app and reopen it, the log starts over. Change this so that the log is
persistent.

Summary
Here are some of the concepts we’ve covered in this tutorial:

• Apps can react to events that are not initiated by the app user, like a text being
received. That means you can build apps in which your users are on a different
phone.

• Nested ifelse and foreach blocks can be used to code complex behaviors. For
more information on conditionals and foreach iteration, see Chapters 18 and 20,
respectively.

• The make text block can be used to build a text object out of multiple parts.

• TinyDB can be used to store and retrieve data from a database. A general
scheme is to call StoreValue to update the database whenever the data changes
and call GetValue to retrieve the database data when the app begins.

CHAPTER 12

NXT Remote Control

In this chapter, you’ll create an app that turns your
Android phone into a remote control for a LEGO
MINDSTORMS NXT robot. The app will have
buttons for driving the robot forward and back-
ward, turning left and right, and stopping. You’ll
program it so the robot automatically stops if it
detects an obstacle. The app will use the Bluetooth
capabilities of the phone to communicate with the
robot.

LEGO MINDSTORMS robots are fun to play with,
but they are also educational. After-school
programs use robots to teach elementary- and
middle-school children problem-solving skills and
introduce them to engineering and computer pro-
gramming. NXT robots are also used by kids aged
9–14 in FIRST Lego League robotics competitions.

The NXT programmable robotics kit includes a main unit called the NXT Intelligent Brick.
It can control three motors and four input sensors. You can assemble a robot from LEGO
building elements, gears, wheels, motors, and sensors. The kit comes with its own soft-
ware to program the robot, but now you can use App Inventor to create Android applica-
tions to control an NXT using Bluetooth connectivity.

The application in this chapter is designed to work with a robot that has wheels and an
ultrasonic sensor, such as the Shooterbot robot pictured here. The Shooterbot is often the
first robot that people build with the LEGO MINDSTORMS NXT 2.0 set. It has left wheels
connected to output port C, right wheels connected to output port B, a color sensor con-
nected to input port 3, and an ultrasonic sensor connected to input port 4.

188  Chapter 12:  NXT Remote Control

What You’ll Learn
This chapter uses the following components and concepts:

• The BluetoothClient component for connecting to the NXT.

• The ListPicker component to provide a user interface for connecting to the
NXT.

• The NxtDrive component for driving the robot’s wheels.

• The NxtUltrasonicSensor component for using the robot’s ultrasonic sensor to
detect obstacles.

• The Notifier component for displaying error messages.

Getting Started
You’ll need Android version 2.0 or higher to use the application in this chapter. Also,
for security reasons, Bluetooth devices must be paired before they can connect to
each other. Before you get started building the app, you’ll need to pair your Android
with your NXT by following these steps:

1. On the NXT, click the right arrow until it says Bluetooth and then press the or-
ange square.

2. Click the right arrow until it says Visibility and then press the orange square.

3. If the Visibility value is already Visible, continue to step 4. If not, click the left or
right arrow to set the value to Visible.

4. On the Android, go to Settings→Wireless & Networks.

5. Make sure the Bluetooth checkbox is checked.

6. Click “Bluetooth settings” and “Scan for devices.”

7. Under “Bluetooth devices,” look for a device named “NXT.”

Note. If you’ve ever changed your robot’s name, look for a device
name that matches your robot’s name instead of “NXT.”

8. If you see “Paired but not connected” under your robot’s name, you’re finished!
Otherwise, continue to step 9.

9. If you see “Pair with this device” under your robot’s name, click it.

10. On the NXT, it should ask for a passkey. Press the orange square to accept 1234.

Designing the Components  189 

11. On the Android, it should ask for the PIN. Enter 1234 and press OK.

12. You should now see “Paired but not connected.” You’re finished!

Connect to the App Inventor website and start a new project. Name it
“NXTRemoteControl” and set the screen’s title to “NXT Remote Control”. Open the
Blocks Editor and connect to the phone.

Designing the Components
For this app, we’ll need to create and define behaviors for both non-visible and
visible components.

Non-Visible Components
Before creating the user interface components, you’ll create some non-visible
components, listed in Table 12-1 and illustrated in Figure 12-1, to control the NXT.

Table 12-1. Non-visible components for the Robot NXT controller app

Component type Palette group What you’ll name it Purpose

BluetoothClient Other stuff BluetoothClient1 Connect to the NXT.

NxtDrive LEGO MINDSTORMS NxtDrive1 Drive the robot’s wheels.

NxtUltrasonicSensor LEGO MINDSTORMS NxtUltrasonicSensor1 Detect obstacles.

Notifier Other stuff Notifier1 Display error messages.

Figure 12-1. The non-visible components displayed at the bottom of the Component Designer

Set the properties of the components in the following way:

1. Set the BluetoothClient property of NxtDrive1 and NxtUltrasonicSensor1 to
BluetoothClient1.

2. Check BelowRangeEventEnabled on NxtUltrasonicSensor1.

3. Set the DriveMotors property of NxtDrive1:

 – If your robot has the left wheel’s motor connected to output port C and the
right wheel’s motor connected to output port B, then the default setting of
“CB” doesn’t need to be changed.

 – If your robot is configured differently, set the DriveMotors property to a
two-letter text value where the first letter is the output port connected to
the left wheel’s motor and the second letter is the output port connected to
the right wheel’s motor.

190  Chapter 12:  NXT Remote Control

4. Set the SensorPort property of NxtUltrasonicSensor1.

 – If your robot’s ultrasonic sensor is connected to input port 4, then the default
setting of “4” doesn’t need to be changed.

 – If your robot is configured differently, set the SensorPort property to the
input port connected to the ultrasonic sensor.

Visible Components
Now let’s create the user interface components shown in Figure 12-2.

Figure 12-2. The app in the Component Designer

To make the Bluetooth connection, you’ll need the unique Bluetooth address of the
NXT. Unfortunately, Bluetooth addresses consist of eight 2-digit hexadecimal num-
bers (a way of representing binary values) separated by colons, making them very
cumbersome to type. You won’t want to type in the address on your phone every
time you run the app. So, to avoid that, you’ll use a ListPicker that displays a list of
the robots that have been paired with your phone and lets you choose one.

You’ll use buttons for driving forward and backward, turning left and right, stopping,
and disconnecting. You can use a VerticalArrangement to lay out everything except
for the ListPicker, and a HorizontalArrangement to contain the buttons for turning
left, stopping, and turning right.

You can build the interface shown in Figure 12-2 by dragging out the components
listed in Table 12-2.

Designing the Components  191 

Table 12-2. Visible components for the Robot NXT controller app

Component type Palette group What you’ll name it Purpose

ListPicker Basic ConnectListPicker Choose the robot to connect to.

VerticalArrangement Screen Arrangement VerticalArrangement1 A visual container.

Button Basic ForwardButton Drive forward.

HorizonalArrangement Screen Arrangement HorizonalArrangement1 A visual container.

Button Basic LeftButton Turn left.

Button Basic StopButton Stop.

Button Basic RightButton Turn right.

Button Basic BackwardButton Drive backward.

Button Basic DisconnectButton Disconnect from the NXT.

To arrange the visual layout as shown in Figure 12-2, place LeftButton, StopButton,
and RightButton inside HorizontalArrangement1, and place ForwardButton,
HorizontalArrangement1, BackwardButton, and DisconnectButton inside
VerticalArrangement1.

Set the properties of the components in the following way:

1. Uncheck Scrollable on Screen1.

2. Set the Width of ConnectListPicker and DisconnectButton to “Fill parent.”

3. Set the Width and Height of VerticalArrangement1, ForwardButton,
HorizontalArrangement1, LeftButton, StopButton, RightButton, and
BackwardButton to “Fill parent.”

4. Set the Text of ConnectListPicker to “Connect…”.

5. Set the Text of ForwardButton to “^”.

6. Set the Text of LeftButton to “<”.

7. Set the Text of StopButton to “-”.

8. Set the Text of RightButton to “>”.

9. Set the Text of BackwardButton to “v”.

10. Set the Text of DisconnectButton to “Disconnect”.

11. Set the FontSize of ConnectListPicker and DisconnectButton to 30.

12. Set the FontSize of ForwardButton, LeftButton, StopButton, RightButton,
and BackwardButton to 40.

In this application, it makes sense to hide most of the user interface until the Bluetooth
is connected to the NXT. To accomplish this, uncheck the Visible property of
VerticalArrangement1. Don’t worry—in a moment, we’ll make the application
reveal the user interface after it connects to the NXT.

192  Chapter 12:  NXT Remote Control

Adding Behaviors to the Components
In this section, you’ll program the behavior of the app, including:

• Letting the user connect the app to a robot by choosing it from a list.

• Letting the user disconnect the app from a robot.

• Letting the user drive the robot using the control buttons.

• Forcing the robot to stop when it senses an obstacle.

Connecting to the NXT
The first behavior you’ll add is connecting to the NXT. When you click
ConnectListPicker, it will show a list of the paired robots. When you choose a
robot, the app will make a Bluetooth connection to that robot.

Displaying the List of Robots
To display the list of robots, you’ll use ConnectListPicker. A ListPicker looks like a
button, but when it’s clicked, it displays a list of items and lets you choose one.

You’ll use the BluetoothClient1.AddressesAndNames block to provide a list of the
addresses and names of Bluetooth devices that have been paired with the Android.
Because BluetoothClient1 is used with NXT components, it automatically limits the
devices included in the AddressesAndNames property to those that are robots, so
you won’t see other kinds of Bluetooth devices (like headsets) in the list. Table 12-3
lists the blocks you’ll need for this step.

Table 12-3. Blocks to add a ListPicker to the app

Block type Drawer Purpose

ConnectListPicker
.BeforePicking

ConnectListPicker Triggered when ConnectListPicker is clicked.

set ConnectListPicker
.Elements to

ConnectListPicker Set the choices that will appear.

BluetoothClient1
.AddressesAndNames

BluetoothClient1 The addresses and names of robots that have been paired 
with the Android.

How the blocks work
When ConnectListPicker is clicked, the ConnectListPicker.BeforePicking event is
triggered before the list of choices is displayed, as shown in Figure 12-3. To specify
the items that will be listed, set the ConnectListPicker.Elements property to the
BluetoothClient1.AddressesAndNames block. ConnectListPicker will list the robots
that have been paired with the Android.

Adding Behaviors to the Components  193 

Figure 12-3. Displaying the list of robots

Test your app. On your phone, click “Connect…” and see what
happens. You should see a list of all the robots your phone has been
paired with.

If you just see a black screen, your phone hasn’t been paired with any
robots. If you see addresses and names of other Bluetooth devices,
such as a Bluetooth headset, the BluetoothClient property of
NxtDrive1 and NxtUltrasonicSensor1 has not been set properly.

Making the Bluetooth Connection
After you choose a robot from the list, the app will connect to that robot
via Bluetooth. If the connection is successful, the user interface will change.
ConnectListPicker will be hidden, and the rest of the user interface components
will appear. If the robot is not turned on, the connection will fail and an error mes-
sage will pop up.

You’ll use the BluetoothClient1.Connect block to make the connection. The
ConnectListPicker.Selection property provides the address and name of the cho-
sen robot.

You’ll use an ifelse block to test whether the connection was successful or not. The
ifelse block has three different areas where blocks are connected: “test,” “then-do,”
and “else-do.” The “test” area will contain the BluetoothClient1.Connect block. The
“then-do” area will contain the blocks to be executed if the connection is successful.
The “else-do” area will contain the blocks to be executed if the connection fails.

194  Chapter 12:  NXT Remote Control

If the connection is successful, you will use the Visible property to hide
ConnectListPicker and show VerticalArrangement1, which contains the rest of
the user interface components. If the connection fails, you will use the Notifier1
.ShowAlert block to display an error message. Table 12-4 lists the blocks you’ll need
for this behavior.

Table 12-4. Blocks for using Bluetooth to connect with the robot

Block type Drawer Purpose

ConnectListPicker.AfterPicking ConnectListPicker Triggered when a robot is chosen from  
ConnectListPicker.

ifelse Control Test whether the Bluetooth connection is 
successful.

BluetoothClient1.Connect BluetoothClient1 Connect to the robot.

ConnectListPicker.Selection ConnectListPicker The address and name of the chosen robot.

set ConnectListPicker.Visible to ConnectListPicker Hide ConnectListPicker.

false Logic Plug into set ConnectListPicker.
Visible to.

set VerticalArrangement1.Visible
to

VerticalArrangement1 Show the rest of the user interface.

true Logic Plug into set VerticalArrangement1
.Visible to.

Notifier1.ShowAlert Notifier1 Show an error message.

text ("Unable to make a Bluetooth connec-
tion.")

Text The error message.

How the blocks work
After a robot is picked, the ConnectListPicker.AfterPicking event is triggered, as
shown in Figure 12-4. The BluetoothClient1.Connect block makes the Bluetooth
connection to the selected robot. If the connection is successful, the “then-do”
blocks are executed: the ConnectListPicker.Visible property is set to false to hide
ConnectListPicker, and the VerticalArrangement1.Visible property is set to true to
show VerticalArrangement1. If the connection fails, the “else-do” blocks are executed:
the Notifier1.ShowAlert block displays an error message.

Adding Behaviors to the Components  195 

Figure 12-4. Making the Bluetooth connection

Disconnecting from the NXT
You’re probably excited about connecting your Android to your NXT, but before you
do that, let’s do one more thing: add the behavior for disconnecting. That way, you’ll
be able to test both connecting and disconnecting.

When DisconnectButton is clicked, the app will close the Bluetooth connection and
the user interface will change. ConnectListPicker will reappear, and the rest of the
user interface components will be hidden.

Use the blocks listed in Table 12-5 to build the BluetoothClient1.Disconnect block
that closes the Bluetooth connection. You will use the Visible property to show
ConnectListPicker and hide VerticalArrangement1, which contains the rest of the
user interface components.

Table 12-5. Blocks for disconnecting from the robot

Block type Drawer Purpose

DisconnectButton.Click DisconnectButton Triggered when DisconnectButton is clicked.

BluetoothClient1 .
Disconnect

BluetoothClient1 Disconnect from the robot.

set ConnectListPicker.
Visible to

ConnectListPicker Show ConnectListPicker.

true Logic Plug into set ConnectListPicker.Visible to.

set VerticalArrangement
1.Visible to

VerticalArrangement1 Hide the rest of the user interface.

false Logic Plug into set VerticalArrangement1.Visible
to.

196  Chapter 12:  NXT Remote Control

How the blocks work
When DisconnectButton is clicked, the DisconnectButton.Clicked event is trig-
gered, as shown in Figure 12-5. The BluetoothClient1.Disconnect block closes the
Bluetooth connection. The ConnectListPicker.Visible property is set to true to show
ConnectListPicker, and the VerticalArrangement1.Visible property is set to false
to hide VerticalArrangement1.

Figure 12-5. Disconnecting from the robot

Test your app. Make sure your robot is turned on and then, on your
phone, click “Connect…” and choose the robot you want to connect
to. It will take a moment to make the Bluetooth connection. Once
the robot connects, you should see the buttons for controlling the
robot, as well as the Disconnect button.

Click the Disconnect button. The buttons for controlling the robot
should disappear, and the Connect button should reappear.

Driving the NXT
Let’s get to the really fun part: adding behavior for driving forward and backward,
turning left and right, and stopping. Don’t forget about stopping—if you do, you’ll
have an out-of-control robot on your hands!

The NxtDrive component provides five blocks for driving the robot’s motors:

• MoveForwardIndefinitely drives both motors forward.

• MoveBackwardIndefinitely drives both motors backward.

• TurnCounterClockwiseIndefinitely turns the robot to the left by driving the
right motor forward and the left motor backward.

Adding Behaviors to the Components  197 

• TurnClockwiseIndefinitely turns the robot to the right by driving the left motor
forward and the right motor backward.

• Stop stops both motors.

The Move… and Turn… blocks each have a parameter called Power. You’ll use a
number block, along with all the other items listed in Table 12-6, to specify the
amount of power the robot should use to turn the motors. The value can range from
0 to 100. However, if you specify too little power, the motors will make a whining
sound but not turn. In this application, you’ll use 90 (percent).

Table 12-6. Blocks for controlling the robot

Block type Drawer Purpose

ForwardButton.Click ForwardButton Triggered when ForwardButton is clicked.

NxtDrive1.MoveForward
Indefinitely

NxtDrive1 Drive the robot forward.

number (90) Math The amount of power.

BackwardButton.Click BackwardButton Triggered when BackwardButton is clicked.

NxtDrive1.MoveBackward
Indefinitely

NxtDrive1 Drive the robot backward.

number (90) Math The amount of power.

LeftButton.Click LeftButton Triggered when LeftButton is clicked.

NxtDrive1.TurnCounter Clock-
wiseIndefinitely

NxtDrive1 Turn the robot counterclockwise.

number (90) Math The amount of power.

RightButton.Click RightButton Triggered when RightButton is clicked.

NxtDrive1.TurnClock-
wiseIndefinitely

NxtDrive1 Turn the robot clockwise.

number (90) Math The amount of power.

StopButton.Click StopButton Triggered when StopButton is clicked.

NxtDrive1.Stop NxtDrive1 Stop the robot.

How the blocks work
When ForwardButton is clicked, the ForwardButton.Clicked event is triggered. The
NxtDrive1.MoveForwardIndefinitely block shown in Figure 12-6 is used to move
the robot forward at 90% power. The remaining events function similarly for the
other buttons, each powering the robot backward, left, and right.

198  Chapter 12:  NXT Remote Control

Figure 12-6. Driving the robot

When StopButton is clicked, the StopButton.Clicked event is triggered. The
NxtDrive1.Stop block is used to stop the robot.

Adding Behaviors to the Components  199 

Test your app. Follow the instructions in the previous “Test your
app” section to connect to the NXT. Make sure the robot is not on a
table where it could fall, and then test its behavior as follows:

1. Click the forward button. The robot should move forward.

2. Click the backward button. The robot should move backward.

3. Click the left button. The robot should turn counterclockwise.

4. Click the right button. The robot should turn clockwise.

5. Click the stop button. The robot should stop.

If your robot doesn’t move, but you can hear a whining sound, you
may need to increase the power. You can use 100 for maximum
power.

Using the Ultrasonic Sensor to Detect Obstacles
Using the ultrasonic sensor, the robot will stop if it encounters an obstacle, like the
culprit shown in Figure 12-7, within 30 centimeters.

Figure 12-7. A common household obstacle for your NXT robot

The NxtUltrasonicSensor component can be used to detect obstacles. It has two
properties named BottomOfRange and TopOfRange that define the detection range
in centimeters. By default, the BottomOfRange property is set to 30 centimeters and
TopOfRange is set to 90 centimeters.

200  Chapter 12:  NXT Remote Control

The NxtUltrasonicSensor component also has three events called BelowRange,
WithinRange, and AboveRange. The BelowRange event will be triggered when an ob-
stacle is detected at a distance below BottomOfRange. The WithinRange event will be
triggered when an obstacle is detected at a distance between BottomOfRange and
TopOfRange. The AboveRange event will be triggered when an obstacle is detected at
a distance above TopOfRange.

You’ll use the NxtUltrasonicSensor1.BelowRange event block, shown in Table 12-7,
to detect an obstacle within 30 centimeters. If you want to detect an obstacle within
a different distance, you can adjust the BottomOfRange property. You’ll use the
NxtDrive1.Stop block to stop the robot.

Table 12-7. Blocks for using the NxtUltrasonicSensor

Block type Drawer Purpose

NxtUltrasonicSensor1
.BelowRange

NxtUltrasonicSensor1 Triggered when the ultrasonic sensor detects an obstacle at a 
distance below 30 centimeters.

NxtDrive1.Stop NxtDrive1 Stop the robot.

How the blocks work
When the robot’s ultrasonic sensor detects an obstacle at a distance below 30 cen-
timeters, the NxtUltrasonicSensor1.BelowRange event is triggered, as shown in
Figure 12-8. The NxtDrive1.Stop block stops the robot.

Figure 12-8. Detecting an obstacle

Test your app. Follow the instructions in the previous “Test your
app” section to connect to the NXT. Using the navigation buttons,
drive your robot toward an obstacle, such as a cat. The robot should
stop when it gets within 30 centimeters of the cat.

If the robot doesn’t stop, the cat may have moved away from the
robot before it got within 30 centimeters. You may need to test your
app with an inanimate obstacle.

Variations  201 

Variations
After you get this application working—and you’ve spent enough time actually
playing with your NXT robot—you might want to try:

• Varying the amount of power when driving the robot.

 – You can do this by changing the numeric value that you plug into
the MoveForwardIndefinitely, MoveBackwardIndefinitely,
TurnCounterclockwiseIndefinitely, and TurnClockwiseIndefinitely
blocks.

• Using the NxtColorSensor to shine a red light when an obstacle is detected.

 – You can use an NxtColorSensor component and its GenerateColor
property.

 – You’ll need to set the DetectColor property to false (or uncheck it in the
Component Designer) because the color sensor cannot detect and generate
color at the same time.

• Using an OrientationSensor to control the robot.

• Using LEGO building elements to physically attach your phone to the robot.
Create applications that make the robot autonomous.

Summary
Here are some of the concepts we’ve covered in this tutorial:

• The ListPicker component allows you to choose from a list of paired robots.

• The BluetoothClient component makes the connection to the robot.

• The Notifier component displays an error message.

• The Visible property is used to hide or show user interface components.

• The NxtDrive component can drive, turn, and stop the robot.

• The NxtUltrasonicSensor component is used to detect obstacles.

CHAPTER 13

Amazon at the Bookstore

Say you’re browsing books at your favorite book-
store and want to know how much a book costs on
Amazon.com. With the “Amazon at the Bookstore”
app, you can scan a book or enter an ISBN, and the
app will tell you the current lowest price of the book
at Amazon.com. You can also search for books on a
particular topic.

“Amazon at the Bookstore” demonstrates how App
Inventor can be used to create apps that talk to web
services (aka APIs, or application programming inter-
faces). This app will get data from a web service created by one of this book’s authors. By the
end of this chapter, you’ll be able to create your own custom app for talking to Amazon.

The application has a simple user interface that lets the user enter keywords or a book’s
ISBN (international standard book number—a 10- or 13-digit code that uniquely identi-
fies a book) and then lists the title, ISBN, and lowest price for a new copy at Amazon.
It also uses the BarcodeScanner component so the user can scan a book to trigger a
search instead of entering text (technically, the scanner just inputs the book’s ISBN for
you!).

What You’ll Learn
In this app (shown in Figure 13-1), you’ll learn:

• How to use a barcode scanner within an app.

• How to access a web information source (Amazon’s API) through the TinyWebDB
component.

• How to process complex data returned from that web information source. In
particular, you’ll learn how to process a list of books in which each book is itself a
list of three items (title, price, and ISBN).

204  Chapter 13:  Amazon at the Bookstore

You’ll also be introduced to source code that you can use to create your own web
service API with the Python programming language and Google’s App Engine.

Figure 13-1. “Amazon at the Bookstore” running in the emulator

What Is an API?
Before we start designing our components and programming the app, let’s take a
closer look at what an application programmer interface (API) is and how one works.
An API is like a website, but instead of communicating with humans, it communicates
with other computer programs. APIs are often called “server” programs because they
typically serve information to “client” programs that actually interface with humans—
like an App Inventor app. If you’ve ever used a Facebook app on your phone, you’re
using a client program that communicates with the Facebook API server.

In this chapter, you’ll create an Android client app that communicates with an
Amazon API. Your app will request book and ISBN information from the Amazon API,
and the API will return up-to-date listings to your app. Your app will then present the
book data to the user.

The Amazon API you’ll use is specially configured for use with App Inventor. We won’t
get into the gory details here, but it’s useful to know that, because of this configura-
tion, you can use the TinyWebDB component to communicate with Amazon. The
good news is, you already know how to do that! You’ll call TinyWebDB.GetValue to
request information and then process the information returned in the TinyWebDB
.GotValue event handler, just as you do when you use a web database. (You can go
back to the MakeText app in Chapter 10 to refresh your memory if needed.)

What Is an API?  205 

Before creating the app, you’ll need to understand the Amazon API’s protocol, which
specifies the format for your request and the format of the data returned. Just as
different cultures have different protocols (when you meet someone, do you shake
hands, bow, or nod your head?), computers talking to one another have protocols
as well.

The Amazon API you’ll be using here provides a web interface for exploring how the
API works before you start using it. While the API is designed to talk to other comput-
ers, this web interface allows you to see just how that communication will happen.
Following these steps, you can try out what particular GetValue calls will return via
the website, and know that the API interface will behave exactly the same when you
ask it for data via the TinyWebDB component in App Inventor:

1. Open a browser and go to http://aiamazonapi.appspot.com/. You’ll see the
website shown in Figure 13-2.

Figure 13-2. The web interface for the App Inventor Amazon API

2. The page allows you to try the one function you can call with this API: getvalue.
Enter a term (e.g., “baseball”) in the Tag field and then click “Get value.” The web
page will display a listing of the top five books returned from Amazon, as shown
in Figure 13-3.

Figure 13-3. Making a call to the Amazon API to search for books related to the tag (or keyword)
“baseball”

206  Chapter 13:  Amazon at the Bookstore

The value returned is a list of books, each one enclosed in brackets [like this] and
providing the title, cost, and ISBN. If you look closely, you’ll see that each book is
in fact represented as a sublist of another main list. The main list (about baseball)
is enclosed in brackets, and each sublist (or book) is enclosed in its own set of
brackets within the main brackets. So the return value from this API is actually a
list of lists, with each sublist providing the information for one book. Let’s look at
this a bit more closely.

Each left bracket ([) in the data denotes the beginning of a list. The first left
bracket of the result denotes the beginning of the outer list (the list of books). To
its immediate right is the beginning of the first sublist, the first book:

[“The Baseball Codes: Beanballs, Sign Stealing, and Bench-Clearing Brawls: The
Unwritten Rules of America\’s Pastime”, ‘$12.98’, ‘0375424695’]

The sublist has three parts: a title, the lowest current price for the book at
Amazon, and the book’s ISBN. When you get this information into your App
Inventor app, you’ll be able to access each part using select list item, with index
1 for the title, index 2 for the price, and index 3 for the ISBN. (To refresh your mem-
ory on working with an index and lists, revisit the MakeQuiz app in Chapter 10.)

3. Instead of searching by keyword, you can search for a book by entering an ISBN.
To perform such a search, you enter a tag of the form “isbn:xxxxxxxxxxxxx,” as
shown in Figure 13-4.

The double brackets ([[) in the result [['"App Inventor"', '$21.93',
'1449397484']] denote that a list of lists is still returned, even though there is
only one book. It may seem a bit strange now, but this will be important when
we access the information for our app.

Figure 13-4. Querying the Amazon API by ISBN instead of keyword

Designing the Components  207 

Designing the Components
The user interface for our Amazon book app is relatively simple: give it a Textbox
for entering keywords or ISBNs, two buttons for starting the two types of searches
(keyword or ISBN), and a third button for letting the user scan a book (we’ll get to
that in a bit). Then, add a heading label and another label for listing the results that
the Amazon API will return, and finally two non-visible components: TinyWebDB and
a BarcodeScanner. Check your results against Figure 13-5.

Figure 13-5. The Amazon at the Bookstore user interface shown in the Designer

Table 13-1 lists all the components you’ll need to build the UI shown in Figure 13-5.

208  Chapter 13:  Amazon at the Bookstore

Table 13-1. Component list for the “Amazon at the Bookstore” app

Component type Palette group What you’ll name it Purpose

Textbox Basic SearchTextBox The user enters keywords or 
ISBN here.

HorizontalArrangement Screen Arrangements HorizontalArrangement1 Arrange the buttons in a line.

Button Basic KeywordSearchButton Click to search by keyword.

Button Basic ISBNButton Click to search by ISBN.

Button Basic ScanButton Click to scan an ISBN from 
a book.

Label Basic Label1 The header “Search Results.”

Label Basic ResultsLabel Where you’ll display the results.

TinyWebDB Not ready for prime time TinyWebDB1 Talk to Amazon.com.

BarcodeScanner Other stuff BarcodeScanner1 Scan barcodes.

Set the properties of the components in the following way:

1. Set the Hint of the SearchTextBox to “Enter keywords or ISBN”.

2. Set the Text properties of the buttons and labels as shown in Figure 13-5.

3. Set the ServiceURL property of the TinyWebDB component to http://aiamazonapi.
appspot.com/.

Designing the Behavior
For this app, you’ll specify the following behaviors in the Blocks Editor:

Searching by keyword
The user enters some terms and clicks the KeywordSearchButton to invoke an
Amazon search. You’ll call TinyWebDB.GetValue to make it happen.

Searching by ISBN
The user enters an ISBN and clicks the ISBNButton. You’ll package the prefix
“isbn:” with the number entered and run the Amazon search.

Barcode scanning
The user clicks a button and the scanner is launched. When the user scans an
ISBN from a book, your app will start the Amazon search.

Processing the list of books
At first, your app will display the data returned from Amazon in a rudimentary
way. Later, you’ll modify the blocks so that the app extracts the title, price, and
ISBN from each book returned and displays them in an organized way.

Designing the Behavior  209 

Searching by Keyword
When the user clicks the KeywordSearchButton, you want to grab the text from the
SearchTextbox and send it as the tag in your request to the Amazon API. You’ll use
the TinyWebDB.GetValue block to request the Amazon search.

When the results come back from Amazon, the TinyWebDB.GotValue event handler
will be triggered. For now, let’s just display the result that is returned directly into
the ResultsLabel, as shown in Figure 13-6. Later, after you see that the data is indeed
being retrieved, you can display the data in a more sophisticated fashion.

Figure 13-6. Send the search request to the API and put results in the ResultsLabel

How the blocks work
When the user clicks the KeywordSearchButton, the TinyWebDB1.GetValue request
is made. The tag sent with the request is the information the user entered in the
SearchTextBox.

If you completed the MakeQuiz app (Chapter 10), you know that TinyWebDB
.GetValue requests are not answered immediately. Instead, when the data arrives
from the API, TinyWebDB1.GotValue is triggered. In GotValue, the blocks check the
value returned to see if it’s a list (it won’t be if the Amazon API is offline or there is no
data for the keywords). If it is a list, the data is placed into the ResultsLabel.

Test your app. Enter a term in the search box and click Search By
Keyword. You should get a listing similar to what is shown in Figure
13-7. (It’s not terribly nice-looking, but we’ll deal with that shortly.)

210  Chapter 13:  Amazon at the Bookstore

Figure 13-7. Keyword search result for “dogs”

Searching by ISBN
The code for searching by ISBN is similar, but in this case the Amazon API expects
the tag to be in the form “isbn:xxxxxxxxxxxxx” (this is the protocol the API expects for
searching by ISBN). You don’t want to force the user to know this protocol; the user
should just be able to enter the ISBN in the text box and click Search by ISBN, and the
app will add the “isbn:” prefix behind the scenes with make text. Figure 13-8 shows
the blocks to do that.

Figure 13-8. Using make text to add the isbn: prefix

How the blocks work
The make text block concatenates the “isbn:” prefix with the information the user
has input in the SearchTextBox and sends the result as the tag to TinyWebDB.
GetValue.

Designing the Behavior  211 

Just as with keyword search, the API sends back a list result for an ISBN search—in
this case, a list of just the one item whose ISBN matches the user’s input exactly.
Because the TinyWebDB.GotValue event handler is already set up to process a list of
books (even a list with only one item), you won’t have to change your event handler
to make this work.

Test your app. Enter an ISBN (e.g., 9781449397487) in the
SearchTextBox and click the ISBNButton. Does the book informa-
tion appear?

Don’t Leave Your Users Hanging
As we’ve seen in earlier chapters that work with TinyWebDB, when you call a web
service (API) with TinyWebDB.GetValue, there can be a delay before the data arrives
and TinyWebDB.GotValue is triggered. It is generally a good idea to let users know
the request is being processed so they don’t worry that the app has hung. For this
app, you can place a message in the ResultsLabel each time you make the call to
TinyWebDB.GetValue, as shown in Figure 13-9.

Figure 13-9. Adding a message to let the user know what is happening

How the blocks work
For both the keyword and ISBN searches, a “Searching Amazon…” message is placed
in ResultsLabel when the data is requested. Note that when GotValue is triggered,
this message is overwritten with the actual results from Amazon.

Scanning a Book
Let’s face it: typing on a cell phone isn’t always the easiest thing, and you tend to
make a mistake here and there. It would certainly be easier (and result in fewer
mistakes) if a user could just launch your app and scan the barcode of the book she
is interested in. This is another great built-in Android phone feature you can tap into
easily with App Inventor.

212  Chapter 13:  Amazon at the Bookstore

The function BarcodeScanner.DoScan starts up the scanner. You’ll want to call this
when the ScanButton is clicked. The event handler BarcodeScanner.AfterScan
is triggered once something has been scanned. It has an argument, result, which
contains the information that was scanned. In this case, you want to initiate an ISBN
search using that result, as shown in Figure 13-10.

Figure 13-10. Blocks for initiating an ISBN search after a user scans

How the blocks work
When the user clicks the ScanButton, DoScan launches the scanner. When some-
thing has been scanned, AfterScan is triggered. The argument result holds the
result of the scan—in this case, a book’s ISBN. The user is notified that a request
has been made, the result (the ISBN scanned) is placed in the SearchTextBox, and
TinyWebDB.GetValue is called to initiate the search. Once again, the TinyWebDB
.GotValue event handler will process the book information returned.

Test your app. Click the ScanButton and scan the barcode of a
book. Does the app display the book information?

Designing the Behavior  213 

Improving the Display
A client app like the one you’re creating can do whatever it wants with the data it
receives—you could compare the price information with that of other online stores,
or use the title information to search for similar books from another library.

Almost always, you’ll want to get the API information loaded into variables that you
can then process further. In the TinyWebDB.GotValue event handler you have so far,
you just place all the information returned from Amazon into the ResultsLabel.

Instead, let’s process (or do something to) the data by (1) putting the title, price, and
ISBN of each book returned into separate variables, and (2) displaying those items in
an orderly fashion. By now, you’re really getting the hang of creating variables and
using them in your display, so try building out the variables you think you’ll need and
the blocks to display each search result on its own separate line. Then compare what
you’ve done with Figure 13-11.

How the blocks work
Four variables—resultList, title, cost, and isbn—are defined to hold each piece
of data as it is returned from the API. The result from the API, valueFromWebDB, is
placed into the variable resultList. This app could have processed the argument
valueFromWebDB directly, but in general, you’ll put it in a variable in case you want to
process the data outside the event handler. (Event arguments like valueFromWebDB
hold their value only within the event handler.)

A foreach loop is used to iterate through each item of the result. Recall that the data
returned from Amazon is a list of lists, with each sublist representing the information
for a book. So the placeholder of the foreach is named bookitem, and it holds the
current book information, a list, on each iteration.

Now we have to deal with the fact that the variable bookitem is a list—the first item
is the title, the second, the price; and the third, the ISBN. Thus, select list item blocks
are used to extract these items and place them into their respective variables (title,
price, and isbn).

214  Chapter 13:  Amazon at the Bookstore

Figure 13-11. Extracting the title, cost, and ISBN of each book, then displaying them on separate lines

Once the data has been organized this way, you can process it however you’d like.
This app just uses the variables as part of a make text block that displays the title,
price, and ISBN on separate lines.

Test your app. Try another search and check out how the book
information is displayed. It should look similar to Figure 13-12.

Customizing the API  215 

Figure 13-12. The search listing displayed in a more sophisticated fashion

Customizing the API
The API you connected to, http://aiamazonapi.appspot.com, was created with the
programming language Python and Google’s App Engine. App Engine lets you create
and deploy websites and services (APIs) that live on Google’s servers. You only pay for
App Engine if your site or API becomes very popular (meaning you’re using up a lot
more of Google’s servers for it).

The API service used here provides only partial access to the full Amazon API and re-
turns a maximum of five books for any search. If you’d like to provide more flexibility—
for example, have it search for items other than books—you can download the source
code from http://appinventorapi.com/amazon/ and customize it.

Such customization does require knowledge of Python programming, so beware!
But if you’ve been completing the App Inventor apps in this book, you might just
be ready for the challenge. To get started learning Python, check out the online text
How to Think Like a Computer Scientist: Learning with Python (http://openbookproject
.net//thinkCSpy/) and check out the section on App Inventor API building in Chapter
24 of this book.

216  Chapter 13:  Amazon at the Bookstore

Variations
Once you get the app working, you might want to explore some variations. For
example,

• As is, the app hangs if the search doesn’t return any books (for instance, when
the user enters an invalid ISBN). Modify the blocks so that the app reports when
there are no results.

• Modify the app so that it only displays books under $10.

• Modify the app so that after you scan a book, its lowest Amazon price is spoken
out loud (use the TextToSpeech component discussed in the “Android, Where’s
My Car?” app in Chapter 7).

• Download the http://aiamazonapi.appspot.com API code from http://examples
.oreilly.com/0636920016632/ and modify it so that it returns more information.
For example, you might have it return the Amazon URL of each book, display
the URL along with each listed book, and let the user click the URL to open that
page. As mentioned earlier, modifying the API requires Python programming
and some knowledge of Google’s App Engine. For more information, check out
Chapter 24.

Summary
Here are some of the concepts we’ve covered with this app:

• You can access the Web from an app using TinyWebDB and specially constructed
APIs. You set the ServiceURL of the TinyWebDB component to the API URL and
then call TinyWebDB.GetValue to request the information. The data isn’t imme-
diately returned but can instead be accessed within the TinyWebDB.GotValue
event handler.

• The BarcodeScanner.DoScan function launches the scan. When the user scans
a barcode, the BarcodeScanner.AfterScan event is triggered and the scanned
data is placed in the argument result.

• In App Inventor, complex data is represented with lists and lists of lists. If you
know the format of the data returned from an API, you can use foreach and
select list item to extract the separate pieces of information into variables, and
then perform whatever processing or display you’d like using those variables.

PART II

Inventor’s Manual

This section is organized by concept, like a traditional programming textbook. You’ll
get an overview of app architecture, then delve into programming topics, including
variables, animation, conditional statements, lists, iteration, procedures, databases,
sensors, APIs, and software engineering and debugging. You can refer to these chap-
ters as needed during your app building, or use them for conceptual study as you
ride the bus or relax at night.

CHAPTER 14

Understanding an App’s Architecture

This chapter examines the structure of an app from a programmer’s perspective. It begins
with the traditional analogy that an app is like a recipe and then proceeds to reconcep-
tualize an app as a set of components that respond to events. The chapter also examines
how apps can ask questions, repeat, remember, and talk to the Web, all of which will be
described in more detail in later chapters.

Many people can tell you what an app is from a user’s perspective, but understand-
ing what it is from a programmer’s perspective is more complicated. Apps have an
internal structure that we must fully understand in order to create them effectively.

One way to describe an app’s internals is to break it into two parts, its components
and its behaviors. Roughly, these correspond to the two main windows you use in
App Inventor: you use the Component Designer to specify the objects (components)
of the app, and you use the Blocks Editor to program how the app responds to user
and external events (the app’s behavior).

Figure 14-1 provides an overview of this app architecture. In this chapter, we’ll explore
this architecture in detail.

220  Chapter 14:  Understanding an App’s Architecture

App

Components

Visible

Button, Textbox,
Label, etc.

Non-visible

Texting,
LocationSensor,
Text To Speech

Button.Click,
Texting.MessageReceived

Event Response

Ball.MoveTo,
Texting.SendMessage,
set Label.Visible to

Variables Behaviors:
Event Handlers Procedures

Figure 14-1. The internal architecture of an App Inventor app

Components
There are two main types of components in an app: visible and non-visible. The app’s
visible components are the ones you can see when the app is launched—things like
buttons, text boxes, and labels. These are often referred to as the app’s user interface.

Non-visible components are those you can’t see, so they’re not part of the user in-
terface. Instead, they provide access to the built-in functionality of the device; for ex-
ample, the Texting component sends and processes SMS texts, the LocationSensor
component determines the device’s location, and the TextToSpeech component
talks. The non-visible components are the technology within the device—little
people that do jobs for your app.

Both visible and non-visible components are defined by a set of properties. Properties
are memory slots for storing information about the component. Visible components,
for instance, have properties like Width, Height, and Alignment, which together
define how the component looks. So a button that looks like the Submit button in
Figure 14-2 to the end user is defined in the Component Designer with a set of prop-
erties, including those shown in Table 14-1.

Table 14-1. Button properties

Width Height Alignment Text

50 30 center Submit
Figure 14-2. Submit button

Behavior  221 

You can think of properties as something like the cells you see in a spreadsheet. You
modify them in the Component Designer to define the initial appearance of a com-
ponent. If you change the number in the Width slot from 50 to 70, the button will
appear wider, both in the Designer and in the app. Note that the end user of the app
doesn’t see the 70; he just sees the button’s width change.

Behavior
An app’s components are generally straightforward to understand: a text box is for
entering information, a button is for clicking, and so on. An app’s behavior, on the
other hand, is conceptually difficult and often complex. The behavior defines how
the app should respond to events, both user initiated (e.g., a button click) and exter-
nal (e.g., an SMS text arriving to the phone). The difficulty of specifying such interac-
tive behavior is why programming is so challenging.

Fortunately, App Inventor provides a visual “blocks” language perfectly suited for
specifying behaviors. This section provides a model for understanding it.

An App As a Recipe
Traditionally, software has often been compared to a recipe. Like a
recipe, a traditional app follows a linear sequence of instructions,
such as those shown in Figure 14-3, that the computer (chef) should
perform.

A typical app might start a bank transaction (A), perform some
computations and modify a customer’s account (B), and then print
out the new balance on the screen (C).

An App As a Set of Event Handlers
However, most apps today, whether they’re for mobile phones,
the Web, or desktop computers, don’t fit the recipe paradigm anymore. They don’t
perform a bunch of instructions in a predetermined order; instead, they react to
events—most commonly, events initiated by the app’s end user. For example, if the
user clicks a button, the app responds by performing some operation (e.g., sending a
text message). For touchscreen phones and devices, the act of dragging your finger
across the screen is another event. The app might respond to that event by drawing
a line from the point of your original touch to the point where you lifted your finger.

These types of apps are better conceptualized as a set of components that respond
to events. The apps do include “recipes”—sequences of instructions—but each
recipe is only performed in response to some event, as shown in Figure 14-4.

A

B

C

Figure 14-3.
Traditional
software follows a
linear sequence of
instructions

222  Chapter 14:  Understanding an App’s Architecture

A

B

C

Event1

D

E

Event2

Figure 14-4. An app as multiple recipes hooked to events

So, as events occur, the app reacts by calling a sequence of functions. Functions are
things you can do to or with a component—operations like sending an SMS text, or
property-changing operations such as changing the text in a label of the user inter-
face. To call a function means to invoke it, to make it happen. We call an event and the
set of functions performed in response to it an event handler.

Many events are initiated by the end user, but some are not. An app can react to
events that happen within the phone, such as changes to its orientation sensor and
the clock (i.e., the passing of time), and events created by things outside the phone,
such as other phones or data arriving from the Web, as shown in Figure 14-5.

App

Clock
Other phones

User

Sensors

Web

GPS satellites

Figure 14-5. An app can respond to both internal and external events

Behavior  223 

One reason App Inventor programming is intuitive is that it’s based directly on this
event-response paradigm; event handlers are primary “words” in the language (in
many languages, this is not the case). You begin defining a behavior by dragging
out an event block, which has the form, “When <event> do”. For example, consider an
app, SpeakIt, that responds to button clicks by speaking the text the user has entered
aloud. This application could be programmed with a single event handler, shown in
Figure 14-6.

Figure 14-6. An event handler for a SpeakIt app

These blocks specify that when the user clicks the button named SpeakItButton, the
TextToSpeech component should speak the words the user has entered in the text box
named TextBox1. The response is the call to the function TextToSpeech1.Speak. The
event is SpeakItButton.Click. The event handler includes all the blocks in Figure 14-6.

With App Inventor, all activity occurs in response to an event. Your app shouldn’t con-
tain blocks outside of an event’s “when-do” block. For instance, the blocks in Figure
14-7 don’t make sense floating alone.

Figure 14-7. Floating blocks won’t do anything outside an event handler

Event Types
The events that can trigger activity fall into the categories listed in Table 14-2.

Table 14-2. Events that can trigger activity

Event type Example

User-initiated event When the user clicks button1, do…

Initialization event When the app launches, do…

Timer event When 20 milliseconds passes, do…

Animation event When two objects collide, do…

External event When the phone receives a text, do…

224  Chapter 14:  Understanding an App’s Architecture

User-initiated events
User-initiated events are the most common type of event. With input forms, it is
typically the button click event that triggers a response from the app. More graphical
apps respond to touches and drags.

Initialization events
Sometimes your app needs to perform certain functions right when the app begins,
not in response to any end-user activity or other event. How does this fit into the
event-handling paradigm?

Event-handling languages like App Inventor consider the app’s launch as an event. If
you want specific functions to be performed immediately when the app opens, you
drag out a Screen1.Initialize event block and place some function call blocks within it.

For instance, in the game MoleMash (Chapter 3), the MoveMole procedure is called at
the start of the app to randomly place the mole, as shown in Figure 14-8.

Figure 14-8. Using a Screen1.Initialize event block to move the mole when the app begins

Timer events
Some activity in an app is triggered by the passing of time. You can think of an
animation as an object that moves when triggered by a timer event. App Inventor
has a Clock component that can be used to trigger timer events. For instance, if you
wanted a ball on the screen to move 10 pixels horizontally at a set time interval, your
blocks would look like Figure 14-9.

Figure 14-9. Using a timer event block to move a ball whenever Clock1.Timer fires

Behavior  225 

Animation events
Activity involving graphical objects (sprites) within canvases will trigger events. So
you can program games and other interactive animations by specifying what should
occur when two objects collide or when an object reaches the edge of the canvas.
For more information, see Chapter 17.

External events
When your phone receives location information from GPS satellites, an event is
triggered. Likewise, when your phone receives a text, an event is triggered (Figure
14-10).

Such external inputs to the device are considered events, just like the user clicking a
button.

So every app you create will be a set of event handlers: one to initialize things, some
to respond to the end user’s input, some triggered by time, and some triggered by
external events. Your job is to conceptualize your app in this way and then design the
response to each event handler.

Figure 14-10. The Texting1.MessageReceived event is triggered whenever a text is received

Event Handlers Can Ask Questions
The responses to events are not always linear recipes; they
can ask questions and repeat operations. “Asking ques-
tions” means to query the data the app has stored and
determine its course (branch) based on the answers. We
say that such apps have conditional branches, as illustrated
in Figure 14-11.

In the diagram, when the event occurs, the app
performs operation A and then checks a condition.
Function B1 is performed if the condition is true. If the
condition is false, the app instead performs B2. In either
case, the app continues on to perform function C.

A

C

Yes No

Condition true?

B1 B2

Event1

Figure 14-11. An event handler
can branch based on the answer
to a conditional question

226  Chapter 14:  Understanding an App’s Architecture

Conditional tests are questions such as “Has the score reached 100?” or “Did the text
I just received come from Joe?” Tests can also be more complex formulas including
multiple relational operators (less than, greater than, equal to) and logical operators
(and, or, not).

You specify conditional behaviors in App Inventor with the if and ifelse blocks. For
instance, the block in Figure 14-12 would report “You Win!” if the player scored 100
points.

Conditional blocks are discussed in detail in Chapter 18.

Figure 14-12. Using an if block to report a win once the player reaches 100 points

Event Handlers Can Repeat Blocks
In addition to asking questions and branching based on the answer, your app can also
repeat operations multiple times. App Inventor provides two blocks for repeating, the
foreach and the while do. Both enclose other blocks. All the blocks within foreach
are performed once for each item in a list. For instance, if you wanted to text the same
message to a list of phone numbers, you could use the blocks in Figure 14-13.

Figure 14-13. The blocks within the foreach block are repeated for each item in the list

The blocks within the foreach block are repeated—in this case, three times, because
the list PhoneNumbers has three items. So the message “thinking of you…” is sent
to all three numbers. Repeating blocks are discussed in detail in Chapter 20.

Summary  227 

Event Handlers Can Remember Things
Because an event handler executes blocks, it often needs to keep track of informa-
tion. Information can be stored in memory slots called variables, which you define in
the Blocks Editor. Variables are like component properties, but they’re not associated
with any particular component. In a game app, for example, you can define a variable
called “score” and your event handlers would modify its value when the user does
something accordingly. Variables store data temporarily while an app is running;
when you close the app, the data is no longer available.

Sometimes your app needs to remember things not just while it runs, but even when
it is closed and then reopened. If you tracked a high score for the history of a game,
for example, you’d need to store this data long-term so it is available the next time
someone plays the game. Data that is retained even after an app is closed is called
persistent data, and it’s stored in some type of a database.

We’ll explore the use of both short-term memory (variables) and long-term memory
(database data) in Chapters 16 and 22, respectively.

Event Handlers Can Talk to the Web
Some apps use only the information within the phone or device. But many apps
communicate with the Web by sending requests to web service APIs (application pro-
gramming interfaces). Such apps are said to be “web-enabled.”

Twitter is an example of a web service to which an App Inventor app can talk. You
can write apps that request and display your friend’s previous tweets and also
update your Twitter status. Apps that talk to more than one web service are called
mashups. We’ll explore web-enabled apps in Chapter 24.

Summary
An app creator must view his app both from an end-user perspective and from the
inside-out perspective of a programmer. With App Inventor, you design how an app
looks and then you design its behavior—the set of event handlers that make an app
behave as you want. You build these event handlers by assembling and configuring
blocks representing events, functions, conditional branches, repeat loops, web calls,
database operations, and more, and then test your work by actually running the app
on your phone. After you write a few programs, the mapping between the internal
structure of an app and its physical appearance becomes clear. When that happens,
you’re a programmer!

CHAPTER 15

Engineering and Debugging an App

HelloPurr, MoleMash, and the other apps covered
in this book’s early chapters are relatively small
software projects and don’t really require what
people often refer to as engineering. That term
is co-opted from other industries; think about
building a scale model of a house from a premade
kit versus designing and building your own real
home. That’s a slightly exaggerated example,
but in general, the process of building something
extremely complex that requires a significant
amount of forethought, planning, and technique falls under the umbrella of engineering. As
soon as you take on a more complicated project, you’ll realize that the difficulty of building
software increases rapidly for each bit of complexity you add—it is not anywhere close to a
linear relationship. For most of us, it takes a few hard knocks before we realize this fact. At that
point, you’ll be ready to learn some software engineering principles and debugging tech-
niques. If you’re already at that point, or if you’re one of those few people who want to learn a
few techniques in the hope of avoiding some of those growing pains, this chapter is for you.

Software Engineering Principles
Here are some basic principles that we’ll cover in this chapter:

• Involve your prospective users in the process as early and as often as possible.

• Build an initial, simpler prototype and then add to it incrementally.

• Code and test in small increments—never more than a few blocks at a time.

• Design the logic for your app before beginning to code.

• Divide, layer, and conquer.

• Comment your blocks so others (and you) can understand them.

• Learn to trace blocks with pencil and paper so that you understand their
mechanics.

230  Chapter 15:  Engineering and Debugging an App

If you follow this advice, you will save yourself time and frustration and build better
software. But you probably won’t follow it every time! Some of this advice may seem
counterintuitive. Your natural inclination is to think of an idea, assume you know
what your users want, and then start piecing together blocks until you think you’ve
finished the app. Let’s go back to the first principle and look at how to understand
what your users want before you start building anything.

Design for Real People with Real Problems
In the movie Field of Dreams, the character Ray hears a voice whisper, “If you build it,
[they] will come.” Ray listens to the whisper, builds a baseball field in the middle of his
Iowa corn patch, and indeed, the 1919 White Sox and thousands of fans show up.

You should know right now that the whisperer’s advice does not apply to software.
In fact, it’s the opposite of what you should do. The history of software is littered
with great solutions for which there is no problem (“Let’s write an app that will tell
people how long it takes to drive their car to the moon!”). Solving a real problem is
what makes for an amazing (and hopefully, in most cases, profitable) app. And to
know what the problem is, you’ve got to talk to the people who have it. This is often
referred to as user-centered design, and it will help you build better apps.

If you meet some programmers, ask them what percentage of the programs they
have written have actually been deployed with real users. You’ll be surprised at how
low the percentage is, even for great programmers. Most software projects run into
so many issues that they don’t even see the light of day.

User-centered design means thinking and talking to prospective users early and
often. This should really start even before you decide what to build. Most success-
ful software was built to solve a particular person’s pain point, and then—and only
then—generalized into the next big thing.

Build a Quick Prototype and Show It to Your Prospective Users
Most prospective users won’t react too well if you ask them to read a document that
specifies what the app will do and give their feedback based on that. What does work
is to show them an interactive model for the app you’re going to create—a prototype.
A prototype is an incomplete, unrefined version of the app. When you build it, don’t
worry about details or completeness or having a beautiful graphical interface; build
it so that it does just enough to illustrate the core value-add of the app. Then, show it
to your prospective users, be quiet, and listen.

Software Engineering Principles  231 

Incremental Development
When you begin your first significantly sized app, your natural inclination might be to
add all of the components and blocks you’ll need in one grand effort and then down-
load the app to your phone to see if it works. Take, for instance, a quiz app. Without
guidance, most beginning programmers will add blocks with a long list of the ques-
tions and answers, blocks to handle the quiz navigation, blocks to handle checking
the user’s answer, and blocks for every detail of the app’s logic, all before testing to
see if any of it works. In software engineering, this is called the Big Bang approach.

Just about every beginning programmer uses this approach. In my classes at USF, I
will often ask a student, “How’s it going?” as he’s working on an app.

“I think I’m done,” he’ll reply.

“Splendid. Can I see it?”

“Ummm, not yet; I don’t have my phone with me.”

“So you haven’t run the app at all?” I ask.

“No.…”

I’ll look over his shoulder at an amazing, colorful configuration of 30 or so blocks. But
he hasn’t tested a single piece of functionality.

It’s easy to get mesmerized and drawn into building your UI and creating all the be-
havior you need in the Blocks Editor. A beautiful arrangement of perfectly intercon-
nected blocks becomes the programmer’s focus instead of a complete, tested app
that someone else can use. It sounds like a shampoo commercial, but the best advice
I can give my students—and aspiring programmers everywhere—is this:

Code a little, test a little, repeat.

Build your app one piece at a time, testing as you go. Soon enough, even this process
will become surprisingly satisfying, because you’ll see results sooner (and have fewer
big, nasty bugs) when you follow it.

Design Before Coding
There are two parts to programming: understanding the logic of the app, and then
translating that logic into some form of programming language. Before you tackle
the translation, spend some time on the logic. Specify what should happen both for
the user and internally in the app. Nail down the logic of each event handler before
moving on to translating that logic into blocks.

Entire books have been written on various program design methodologies. Some
people use diagrams like flowcharts or structure charts for design, while others
prefer handwritten text and sketches. Some believe that all “design” should end up
directly alongside your code as annotation (comments), not in a separate document.

232  Chapter 15:  Engineering and Debugging an App

The key for beginning programmers is to understand that there is a logic to all pro-
grams that has nothing to do with a particular programming language. Simultaneously
tackling both that logic and its translation into a language, no matter how intuitive the
language, can be overwhelming. So, throughout the process, get away from the com-
puter and think about your app, make sure you’re clear on what you want it to do, and
document what you come up with in some way. Then be sure and hook that “design
documentation” to your app so others can benefit from it. We’ll cover this next.

Comment Your Code
If you’ve completed a few of the tutorials in this book, you’ve probably seen the
yellow boxes that appear in some block samples (see Figure 15-1). These are called
comments. In App Inventor, you can add comments to any block by right-clicking it
and choosing Add Comment. Comments are just annotation; they don’t affect the
app’s execution at all.

Figure 15-1. Using a comment on the if block to describe what it does in plain English

Why comment then? Well, if your app is successful, it will live a long life. Even after
spending only a week away from your app, you will forget what you were thinking
at the time and not have a clue what some of the blocks do. For this reason, even if
nobody else will ever see your blocks, you should add comments to them.

And if your app is successful, it will undoubtedly pass through many hands. People
will want to understand it, customize it, extend it. As soon as you have the wonderful
experience of starting a project with someone’s uncommented code, you’ll under-
stand completely why comments are essential.

Commenting a program is not intuitive, and I’ve never met a beginning programmer
who thought it was important. But I’ve also never met an experienced programmer
who didn’t do it.

Divide, Layer, and Conquer
Problems become overwhelming when they’re too big. The key is to break a prob-
lem down. There are two main ways to do this. The one we’re most familiar with is
to break a problem down into parts (A, B, C) and tackle each one individually. The

Software Engineering Principles  233 

second, less common way is to break a problem into layers from simple to complex.
Add a few blocks for some simple behavior, test the software to make sure it behaves
as you want, add another layer of complexity, and so on.

Let’s use the MakeQuiz app in Chapter 10 as an example for evaluating these two
methods. That app lets the user navigate through the questions by clicking a Next
button. It also checks the user’s answers to see if she’s correct. So, in designing this
app, you might break it into two parts—question navigation and answer checking—
and program each separately.

But within each of those two parts, you could also break down the process from
simple to complex. So, for question navigation, start by creating the code to display
only the first question in the list of questions, and test it to make sure it works. Then
build the code for getting to the next question, but ignore the issue of what happens
when you get to the last question. Once you’ve tested that the quiz will take you
to the end, add the blocks to handle the “special case” of the user reaching the last
question.

It’s not an either/or case of whether you should break a problem down into parts or
into layers of complexity, but it’s worth considering which approach might help you
more based on what you’re actually building.

Understand Your Language: Tracing with Pen and Paper
When an app is in action, it is only partially visible. The end user of an app sees only
its outward face—the images and data that are displayed in the user interface. The
inner workings of software are hidden to the outside world, just like the internal
mechanisms of the human brain (thankfully!). As an app executes, we don’t see the
instructions (blocks), we don’t see the program counter that tracks which instruction
is currently being executed, and we don’t see the software’s internal memory cells (its
variables and properties). In the end, this is how we want it: the end user should see
only what the program explicitly displays. But while you are developing and testing
software, you want to see everything that is happening.

You as the programmer see the code during development, but only a static view
of it. Thus, you must imagine the software in action: events occurring, the program
counter moving to and executing the next block, the values in the memory cells
changing, and so on.

Programming requires a shift between two different views. You begin with the static
model—the code blocks—and try to envision how the program will actually behave.
When you are ready, you shift to testing mode: playing the role of the end user and
testing the software to see if it behaves as you expect. If it does not, you must shift
back to the static view, tweak your model, and test again. Through this back and
forth process, you move toward an acceptable solution.

234  Chapter 15:  Engineering and Debugging an App

When you begin programming, you have only a partial model of how a computer
program works—the entire process seems almost magical. You begin with some
simple apps: clicking a button causes a cat to meow! You then move on to more com-
plex apps, step through some tutorials, and maybe make a few changes to customize
them. The beginner partially understands the inner workings of the apps but certain-
ly does not feel in control of the process. The beginner will often say, “it’s not work-
ing,” or “it’s not doing what it’s supposed to do.” The key is to learn how things work to
the point that you think more subjectively about the program and instead say things
such as, “My program is doing this,” and “My logic is causing the program to.…”

One way to learn how programs work is to trace the execution of some simple app,
representing on paper exactly what happens inside the device when each block is
performed. Envision the user triggering some event handler and then step through
and show the effect of each block: how the variables and properties in the app
change, how the components in the user interface change. Like a “close reading” in
a literature class, this step-by-step tracing forces you to examine the elements of the
language—in this case, App Inventor blocks.

The complexity of the sample you trace is almost immaterial; the key is that you slow
down your thought process and examine the cause and effect of each block. You’ll
gradually begin to understand that the rules governing the whole process are not as
overwhelming as you originally thought.

For example, consider these slightly altered blocks, shown in Figures 15-2 and 15-3,
from the Presidents Quiz app (Chapter 8).

Figure 15-2. Setting the Text in QuestionLabel to the first item in QuestionList when the app begins

Do you understand this code? Can you trace it and show exactly what happens in
each step?

You start tracing by first drawing memory cell boxes for all pertinent variables and
properties. In this case, you need boxes for the currentQuestionIndex and the
QuestionLabel.Text, as shown in Table 15-1.

Software Engineering Principles  235 

Figure 15-3. This block is executed when the user clicks the NextButton

Table 15-1. Boxes to hold the changing text and index values

QuestionLabel.Text currentQuestionIndex

Next, think about what happens when an app begins—not from a user’s perspective,
but internally within the app when it initializes. If you’ve completed some of the tuto-
rials, you probably know this, but perhaps you haven’t thought about it in mechani-
cal terms. When an app begins:

1. All the component properties are set based on their initial values in the
Component Designer.

2. All variable definitions and initializations are performed.

3. The blocks in the Screen.Initialize event handler are performed.

Tracing a program helps you understand these mechanics. So what should go in the
boxes after the initialization phase?

As shown in Table 15-2, the 1 is in currentQuestionIndex because the variable
definition is executed when the app begins, and it initializes it to 1. The first ques-
tion is in QuestionLabel.Text because Screen.Initialize selects the first item from
QuestionList and puts it there.

Table 15-2. The values after the Presidents Quiz app initializes

QuestionLabel.Text currentQuestionIndex

Which president implemented the "New Deal" 
during the Great Depression?

1

Next, trace what happens when the user clicks the Next button. Examine each block
one by one. First, the currentQuestionIndex is incremented. At an even more
detailed level, the current value of the variable (1) is added to 1, and the result (2)

236  Chapter 15:  Engineering and Debugging an App

is placed in currentQuestionIndex. The if statement is false because the value of
currentQuestionIndex (2) is less than the length of QuestionList (3). So the sec-
ond item is selected and put into QuestionLabel.Text, as illustrated in Table 15-3.

Table 15-3. The values after NextButton is clicked

QuestionLabel.Text currentQuestionIndex

Which president granted communist China formal 
recognition in 1979?

2

Trace what happens on the second click. Now currentQuestionIndex is incremented
and becomes 3. What happens with the if? Before reading ahead, examine it very
closely and see if you can trace it correctly.

On the if test, the value of currentQuestionIndex (3) is indeed greater than or equal
to the length of QuestionList. So the currentQuestionIndex is set to 1 and the first
question is placed into the label, as shown in Table 15-4.

Table 15-4. The values after NextButton is clicked a second time

QuestionLabel.Text currentQuestionIndex

Which president implemented the "New Deal" 
during the Great Depression?

1

Our trace has uncovered a bug: the last question in the list never appears!

It is through discoveries like this that you become a programmer, an engineer.
You begin to understand the mechanics of the programming language, absorbing
sentences and words in the code instead of vaguely grasping paragraphs. Yes, the
programming language is complex, but each “word” has a definite and straight-
forward interpretation by the machine. If you understand how each block maps to
some variable or property changing, you can figure out how to write or fix your app.
You realize that you are in complete control.

Now if you tell your friends, “I’m learning how to let a user click a Next button to get
to the next question; it’s really tough,” they’d think you were crazy. But such program-
ming is very difficult, not because the concepts are so complex, but because you
have to slow down your brain to figure out how it, or a computer, processes each and
every step, including those things your brain does subconsciously.

Debugging an App
Tracing an app step by step is one way to understand programming; it’s also a time-
tested method of debugging an app when it has problems.

Tools like App Inventor (which are often referred to as interactive development envi-
ronments, or IDEs) provide the high-tech version of pen-and-paper tracing through
debugging tools that automate some of the process. Such tools improve the app
development process by providing an illuminated view of an app in action. These
tools allow the programmer to:

Debugging an App  237 

• Pause an app at any point and examine its variables and properties.

• Perform individual instructions (blocks) to examine their effects.

Watching Variables
Probably the most important capability a debugger can provide is to let you examine
the value of variables and properties as an app executes—in essence, making the
internal memory of the computer visible to the software developer.

App Inventor lets you do just that with its Watch mechanism, shown in Figure 15-4.
(The variable definition block hidden from view is for currentQuestionIndex.) As
you are live testing on the phone or emulator, you simply right-click any variable
definition block within the Blocks Editor and choose Watch.

Figure 15-4. Using the Watch mechanism to view variable values as the app runs

A box appears that’s connected to the “watched” variable, showing its current value.
If you then play the role of the end user and initiate some events in the app, you’ll
see the variable’s value change in the Blocks Editor as the user interface changes.

For example, if you were testing the NextButton behavior of a quiz app, you could
watch the currentQuestionIndex variable, as shown in Figure 15-5. When the app
starts, the variable should contain the value 1.

If you then click the NextButton in the user interface (on either the emulator or
phone), the NextButton.Click event handler will be triggered, and the watch box
will change when the variable is incremented, as shown in Figure 15-6.

Figure 15-5. Testing the NextButton behavior by watching the currentQuestionIndex variable

238  Chapter 15:  Engineering and Debugging an App

Figure 15-6. The watch box changes as the variable is incremented

Note that the value in the white watch box is the dynamic value of the variable as
the app runs. The number 1 block slotted into the variable definition never changes
unless the programmer changes it; it is the initialization value, the value at which the
variable will begin if you relaunch the app.

You could continue in this way, clicking the NextButton to test that the event han-
dler works even when the boundary condition (arriving at the last question) is met.
For our buggy blocks, you’d see that the index switched to 1 a step too early.

In essence, the Watch mechanism performs the pen-and-paper trace for you and lets
you see the “hidden” memory of the app as it runs. It’s a great way to really understand
your app and discover bugs!

Testing Individual Blocks
While the Watch mechanism allows you to examine variables during an app’s execu-
tion, another tool called Do It lets you try out individual blocks outside the ordinary
execution sequence. Right-click any block and choose Do It, and the block will be
performed. If the block is an expression that returns a value, App Inventor will show
that value in a box above the block.

Do It is very useful in debugging logic problems in your blocks. Consider the quiz’s
NextButton.Click event handler again, and suppose it has a logic problem in which
you don’t navigate through all the questions. You could test the program by clicking
Next in the user interface and checking to see if the appropriate question appears
each time. You might even watch the currentQuestionIndex to see how each click
changes it.

But this type of testing only allows you to examine the effect of entire event han-
dlers. The app will perform all the blocks in the event handler for the button click
before allowing you to examine your watch variables or the user interface.

Debugging an App  239 

The Do It tool lets you slow down the testing process and examine the state of the
app after any block. The general scheme is to initiate user interface events until you
get to the problem point in the app. After discovering that the third question wasn’t
appearing in the quiz app, you might click the NextButton once to get to the second
question. Then, instead of clicking the NextButton again and having the entire event
handler performed in one swoop, you could use Do It to perform the blocks within
the NextButton.Click event handler one at a time. You’d start by right-clicking the
top row of blocks (the increment of currentQuestionIndex) and choosing Do It, as
illustrated in Figure 15-7.

This would change the index to 3. App execution would then stop—Do It causes
only the chosen block and any subordinate blocks to be performed. This allows you,
the tester, to examine the watched variables and the user interface. When you’re
ready, you can choose the next row of blocks (the if test) and select Do It so that it’s
performed. At every step of the way, you can see the effect of each block.

Figure 15-7. Using the Do It tool to perform the blocks one at a time

Incremental Development with Do It
It ‘s important to note that performing individual blocks is not just for debugging. It can
also be used during development to test blocks as you go. For instance, if you were cre-
ating a long formula to compute the distance in miles between two GPS coordinates,
you might test the formula at each step to verify that the blocks make sense.

Activating and Deactivating Blocks
Another way to help you debug and test your app incrementally is to activate and
deactivate blocks. This allows you to leave problematic or untested blocks in an app but
tell the system to ignore them temporarily as the app runs. You can then test the acti-
vated blocks and get them to work fully without worrying about the problematic ones.

240  Chapter 15:  Engineering and Debugging an App

You can deactivate any block by right-clicking it and choosing Deactivate. The block
will be grayed out, and when you run the app it will be ignored. When you’re ready,
you can activate the block by right-clicking it again and choosing Activate.

Summary
The great thing about App Inventor is how easy it is—its visual nature gets you start-
ed building an app right away, and you don’t have to worry about a lot of low-level
details. But the reality is that App Inventor can’t figure out what your app should do
for you, much less exactly how to do it. Even though it’s tempting to just jump right
into the Designer and Blocks Editor and start building an app, it’s important to spend
some time thinking about and planning in detail what exactly your app will do. It
sounds a bit painful, but if you listen to your users, prototype, test, and trace the logic
of your app, you’ll be building better apps in no time.

CHAPTER 16

Programming Your App’s Memory

Just as people need to remember
things, so do apps. This chapter exam-
ines how you can program an app to
remember information.

When someone tells you the phone
number of a pizza place for a one-
time immediate call, your brain stores
it in a memory slot. If someone calls
out some numbers for you to add, you
also store the immediate results in a
memory slot. In such cases, you are
not fully conscious of how your brain
stores information or recalls it.

An app has a memory as well, but its inner workings are far less mysterious than those
of your brain. In this chapter, you’ll learn how to set up an app’s memory, how to store
information in it, and how to retrieve that information at a later time.

Named Memory Slots
An app’s memory consists of a set of named memory slots. Some of these memory
slots are created when you drag a component into your app; these slots are called
properties. You can also define named memory slots that are not associated with a
particular component; these are called variables. Whereas properties are typically
associated with what is visible in an app, variables can be thought of as the app’s
hidden “scratch” memory.

242  Chapter 16:  Programming Your App’s Memory

Properties
Components—at least the visible ones like Button, TextBox, and Canvas—are part
of the user interface. But to the app, each component is completely defined by a set
of properties. The values stored in the memory slots of each property determine how
the component appears.

You can modify property memory slots directly in the Component Designer, as
shown in Figure 16-1.

Figure 16-1. Modifying the memory slots in the property form to change the app’s appearance

The Canvas component of Figure 16-1 has six properties. The BackgroundColor and
PaintColor are memory slots that hold a color. The BackgroundImage holds a file-
name (kitty.png). The Visible property holds a Boolean value (true or false, depend-
ing on whether the box is checked). The Width and Height slots hold a number or a
special designation (e.g., “Fill parent”).

When you change a property in the Component Designer, you are specifying how
the app should appear when it’s launched. Someone using the app (the end user)
never sees that there is a memory slot named Height containing a value of 300. The
end user only sees the user interface with a component that is 300 pixels tall.

Defining Variables  243 

Defining Variables
Like properties, variables are named memory slots, but they are not associated with a
particular component. You define a variable when your app needs to remember some-
thing that is not being stored within a component property. For example, a game app
might need to remember what level the user has reached. If the level number were
going to appear in a Label component, you might not need a variable, because you
could just store the level in the Text property of the Label component. But if the level
number is not something the user will see, you’d define a variable to store it.

The Presidents Quiz (Chapter 8) is another example of an app that needs a variable.
In that app, only one question of the quiz should appear at a time in the user inter-
face, while the rest of the questions are kept hidden from the user. Thus, you need to
define a variable to store the list of questions.

Whereas properties are created automatically when you drag a component into the
Component Designer, you define a new variable explicitly in the Blocks Editor by
dragging out a def variable block. You can name the variable by clicking the text
“variable” within the block, and you can specify an initial value by dragging out a
number, text, color, or make a list block and plugging it in. Here are the steps you’d
follow to create a variable called score with an initial value of 0:

1. Drag the def variable block (Figure 16-2) from the Definitions folder in the
Built-In blocks.

Figure 16-2. A def variable block

2. Change the name of the variable by clicking on the text “variable” and typing
“score”, as illustrated in Figure 16-3.

Figure 16-3. Changing the variable name

3. Set the initial value to a number by dragging out the number block and plugging
it into the variable definition (Figure 16-4).

Figure 16-4. Setting the value to a number

244  Chapter 16:  Programming Your App’s Memory

4. Change the initial value from the default number (123) to 0 (Figure 16-5).

Figure 16-5. Setting the initial value to 0

When you define a variable, you tell the app to set up a named memory slot for
storing a value. These slots, as with properties, are not visible to the user.

The initialization block you plug in specifies the value that should be placed in the
slot when the app begins. Besides initializing with numbers or text, you can also
place a make a list block into the def var block. This tells the app that the variable
names a list of memory slots instead of a single value. To learn more about lists, see
Chapter 19.

Setting and Getting a Variable
When you define a variable, App Inventor creates two blocks for it, both of which
appear in the My Definitions drawer, shown in Figure 16-6.

Figure 16-6. The My Definitions drawer contains set and get blocks for your variable

The set global to block lets you modify (set) the value stored in the variable. For
instance, the blocks in Figure 16-7 place a 5 in the variable score. The term “global” in
the set global score to block refers to the fact that the variable can be used in all of the
program’s event handlers (globally). Some programming languages allow you to de-
fine variables that are “local” to a particular part of the program; App Inventor does not.

Figure 16-7. Placing a number 5 into the variable score

Setting a Variable to an Expression  245 

The block labeled global score helps you retrieve (get) the value of a variable. For
instance, if you wanted to check if the score was 100 or greater, you’d plug the global
score block into an if test, as demonstrated in Figure 16-8.

Figure 16-8. Using the global score block to get the value stored in the variable

Setting a Variable to an Expression
You can put simple values like 5 into a variable, but often you’ll set the variable to a
more complex expression (expression is the computer science term for a formula). For
example, when the user clicks Next to get to the next question in a quiz app, you’ll
need to set the currentQuestion variable to one more than its current value. When
someone does something bad in a game app, you might modify the score variable
to 10 less than its current value. In a game like MoleMash (Chapter 3), you change the
horizontal (x) location of the mole to a random position within a canvas. You’ll build
such expressions with a set of blocks that plug into a set global to block.

Incrementing a Variable
Perhaps the most common expression is for incrementing a variable, or setting a vari-
able based on its own current value. For instance, in a game, when the player scores
a point, the variable score can be incremented by 1. Figure 16-9 shows the blocks to
implement this behavior.

Figure 16-9. Incrementing the variable score by 1

If you can understand these kinds of blocks, you’re well on your way to becoming
a programmer. You read these blocks as “set the score to one more than it already
is,” which is another way to say increment your variable. The way it works is that the
blocks are interpreted inside out, not left to right. So the innermost blocks—the
global score and the number 1 block—are evaluated first. Then the + block is per-
formed and the result is “set” into the variable score.

246  Chapter 16:  Programming Your App’s Memory

Supposing there were a 5 in the memory slot for score before these blocks, the app
would perform the following steps:

1. Retrieve the 5 from score’s memory slot.

2. Add 1 to it to get 6.

3. Place the 6 into score’s memory slot (replacing the 5).

For more on incrementing, see Chapter 19.

Building Complex Expressions
In the Math drawer of the Built-In blocks (Figure 16-10), App Inventor provides a
wide range of mathematical functions similar to those you’d find in a spreadsheet or
calculator.

Figure 16-10. The blocks contained in the Math drawer

Setting a Variable to an Expression  247 

You can use these blocks to build a complex expression and then plug them in as the
righthand-side expression of a set variable to block. For example, to move an image
sprite to a random column within the bounds of a canvas, you’d configure an expres-
sion consisting of a * (multiply) block, a – (subtract) block, a Canvas.Width property,
and a random fraction function, as illustrated in Figure 16-11.

Figure 16-11. You can use math blocks to build complex expressions like this one

As with the increment example in the previous section, the blocks are interpreted by
the app in an inside-out fashion. Supposing the Canvas has a Width of 300 and the
ImageSprite has a Width of 50, the app would perform the following steps:

1. Retrieve the 300 and the 50 from the memory slots for Canvas1.Width and
ImageSprite.Width, respectively.

2. Subtract: 300 – 50 = 250.

3. Call the random fraction function to get a number between 0 and 1 (say, .5).

4. Multiply: 250 * .5 = 125.

5. Place the 125 into the memory slot for the ImageSprite1.X property.

Displaying Variables
When you modify a component property, as in the preceding example, the user
interface is directly affected. This is not true for variables; changing a variable has no
direct effect on the app’s appearance. If you just incremented a variable score but
didn’t modify the user interface in some other way, the user would never know there
was a change. It’s like the proverbial tree falling in the forest: if nobody was there to
hear it, did it really happen?

Sometimes you do not want to immediately manifest a change to the user interface
when a variable changes. For instance, in a game you might track statistics (e.g.,
missed shots) that will only appear when the game ends.

This is one of the advantages of storing data in a variable as opposed to a compo-
nent property: it allows you to show just the data you want when you want to show
it. It also allows you to separate the computational part of your app from the user
interface, making it easier to change that user interface later.

248  Chapter 16:  Programming Your App’s Memory

For example, with a game you could store the score directly in a Label or in a vari-
able. If you store it in a Label, you’d increment the Label’s Text property when
points were scored, and the user would see the change directly. If you stored the
score in a variable and incremented the variable when points were scored, you’d
need to include blocks to also move the value of the variable into a label.

However, if you decided to change the app to display the score in a different manner,
the variable solution would be easier to change. You wouldn’t need to find all the
places that change the score; those blocks would be unmodified. You’d only need to
modify the display blocks.

The solution using the Label and no variable would be harder to change, as you’d
need to replace all the increment changes with, say, modifications to the Width of
the label.

Summary
When an app is launched, it begins executing its operations and responding to
events that occur. When responding to events, the app sometimes needs to remem-
ber things. For a game, this might be each player’s score or the direction in which an
object is moving.

Your app remembers things within component properties, but when you need addi-
tional memory slots not associated with a component, you can define variables. You
can store values into a variable and retrieve the current value, just like you do with
properties.

As with property values, variable values are not visible to the end user. If you want
the end user to see the information stored in a variable, you add blocks that display
that information in a label or another user interface component.

CHAPTER 17

Creating Animated Apps

This chapter discusses methods for creating apps with
simple animations—objects that move. You’ll learn the
basics of creating two-dimensional games with App
Inventor and become comfortable with image sprites
and handling events like two objects colliding.

When you see an object moving smoothly along the
computer screen, what you’re really seeing is a quick
succession of images with the object in a slightly differ-
ent place each time. It’s an illusion not much different
from “flipbooks,” in which you see a moving picture by
flipping quickly through the pages (and it’s also how far
more sophisticated animated films are made!).

With App Inventor, you’ll define animation by placing
objects within a Canvas component and moving those
objects around the Canvas over time. In this chapter,
you’ll learn how the Canvas coordinate system works,
how the Clock.Timer event can be used to trigger movement, how to control the speed of
objects, and how to respond to events such as two objects colliding.

Adding a Canvas Component to Your App
You can drag a Canvas component into your app
from the Basic palette. After dragging it out, spec-
ify the Canvas’s Width and Height. Often, you’ll
want the Canvas to span the width of the device
screen. To do this, choose “Fill parent” when speci-
fying the Width, as shown in Figure 17-1.

You can do the same for the Height, but
generally you’ll set it to some number (e.g., 300
pixels) to leave room for other components
above and below the Canvas.

Figure 17-1. Setting the Canvas’s Width
to span the screen

250  Chapter 17:  Creating Animated Apps

The Canvas Coordinate System
A drawing on a canvas is really a table of pixels, where a pixel is the tiniest possible
dot of color that can appear on the phone (or other device). Each pixel has a location
(or table cell) on the canvas, which is defined by an x–y coordinate system, as illus-
trated in Figure 17-2. In this coordinate system, x defines a location on the horizontal
plane (left to right), and y defines a location on the vertical plane (up and down).

x=0, y=0 x=19, y=0

x=0, y=14

x=3, y=3

x=19, y=14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 17-2. The Canvas coordinate system

It might seem a bit counterintuitive, but the top-left cell in a Canvas starts with 0 for
both coordinates, so this position is represented as (x=0,y=0). (This is different than
the index you use in App Inventor for lists, which starts at the seemingly more nor-
mal value of 1.) As you move right, the x coordinate gets larger; as you move down,
the y coordinate gets larger. The cell to the immediate right of the top-left corner is
(x=1,y=0). The top-right corner has an x coordinate equal to the width of the canvas
minus 1. Most phone screens have a width close to 300, but for the sample canvas
shown here, the Width is 20, so the top-right corner is the coordinate (x=19,y=0).

You can change the appearance of the canvas in two ways: (1) by painting on it, or
(2) by placing and moving objects within it. This chapter will focus primarily on the
latter, but let’s first discuss how you “paint” and how to create animation by painting
(this is also the topic of the PaintPot app in Chapter 2).

Each cell of the canvas holds a pixel defining the color that should appear there.
The Canvas component provides the Canvas.DrawLine and Canvas.DrawCircle
blocks for painting pixels on it. You first set the Canvas.PaintColor property to

Animating Objects with Timer Events  251 

the color you want and then call one of the Draw blocks to draw in that color. With
DrawCircle, you can paint circles of any radius, but if you set the radius to 1, as
shown in Figure 17-3, you’ll paint an individual pixel.

Figure 17-3. DrawCircle with radius 1 paints an individual pixel with each touch

App Inventor provides a palette of 14 basic colors that you can use to paint pixels (or
component backgrounds). You can access a wider range of colors by using the color
numbering scheme explained in the App Inventor documentation at http://appinventor
.googlelabs.com/learn/reference/blocks/colors.html.

The second way to modify the appearance of a canvas is to place Ball and
ImageSprite components on it. A sprite is a graphical object placed within a larger
scene—in this case, a canvas. Both the Ball and ImageSprite components are sprites;
they are different only in appearance. A Ball is a circle whose appearance can only be
modified by changing its color or radius, whereas an ImageSprite can take on any ap-
pearance as defined by an image file you upload. Image Sprites and Balls can only be
added within a Canvas; you can’t drag them into the user interface outside of one.

Animating Objects with Timer Events
One way to specify animation in App Inventor is to change an object in response to a
timer event. Most commonly, you’ll move sprites to different locations on the canvas
at set time intervals. Using timer events is the most general method of defining
those set time intervals. Later, we’ll also discuss an alternative method of program-
ming animation using the ImageSprite and Ball components’ Speed and Heading
properties.

252  Chapter 17:  Creating Animated Apps

Button clicks and other user-initiated events are simple to understand: the user does
something, and the app responds by performing some operations. Timer events are
different: they aren’t triggered by the end user but instead by the passing of time.
You have to conceptualize the phone’s clock triggering events in the app instead of a
user doing something.

To define a timer event, you first drag a Clock component into your app within the
Component Designer. The Clock component has a TimerInterval property associ-
ated with it. The interval is defined in terms of milliseconds (1/1,000 of a second). If
you set the TimerInterval to 500, that means a timer event will be triggered every
half-second. The smaller the TimerInterval, the faster your object will move.

After adding a Clock and setting a TimerInterval in the Designer, you can drag out a
Clock.Timer event in the Blocks Editor. You can put any blocks you like in this event,
and they’ll be performed every time interval.

Creating Movement
To show a sprite moving over time, you’ll use the MoveTo function found in both the
ImageSprite and Ball components. For example, to move a ball horizontally across
the screen, you’d use the blocks in Figure 17-4.

Figure 17-4. Moving the ball horizontally across the screen

MoveTo moves an object to an absolute location on the canvas, not a relative
amount. So, to move an object some amount, you set the MoveTo arguments to the
object’s current location plus an offset. Since we’re moving horizontally, the x argu-
ment is set to the current x location (Ball1.X) plus the offset 20, while the y argument
is set to stay at its current setting (Ball1.Y).

If you wanted to move the ball diagonally, you’d add an offset to both the x and y
coordinates, as shown in Figure 17-5.

High-Level Animation Functions  253 

Figure 17-5. Offsetting both the x and y coordinates to move the ball diagonally

Speed
How fast is the ball moving in the preceding example? The speed depends on both
the Clock’s TimerInterval property and the parameters you specify in the MoveTo
function. If the interval is set to 1,000 milliseconds, that means an event will be trig-
gered every second. For the horizontal example shown in Figure 17-4, the ball will
move 20 pixels per second.

But a TimerInterval of 1,000 milliseconds doesn’t provide very smooth animation;
the ball will only move every second, and this will appear jerky. To get smoother
movement, you need a smaller interval. If the TimerInterval was set instead to 100
milliseconds, the ball would move 20 pixels every tenth of a second, or 200 pixels per
second—a rate that will appear much smoother to anyone using your app. There’s
another way to change the speed instead of changing the timer interval—can you
think of what that is? (Hint: Speed is a function of how often you move the ball and
how far you move it each time.) You could also alter speed by keeping a timer inter-
val of 1,000 milliseconds and instead changing the MoveTo operation so the ball
only moves 2 pixels every time interval—2 pixels/100ms is still 20 pixels/second.

High-Level Animation Functions
The ability to move an object across the screen is useful for things like animated ads
that slide in and out, but to build games and other animated apps, you need more
complex functionality. Fortunately, App Inventor provides some high-level blocks for
dealing with animation events such as an object reaching the screen’s edge or two
objects colliding.

In this context, high-level block means that App Inventor takes care of the lower-level
details of determining events like when two sprites collide. You could check for such
occurrences yourself using Clock.Timer events and checking the X,Y, Height, and
Width properties of the sprites. Such programming would require some fairly com-
plex logic, however. Because these events are common to many games and other
apps, App Inventor provides them for you.

254  Chapter 17:  Creating Animated Apps

EdgeReached
Consider again the animation in which the object is moving diagonally from the top
left to the bottom right of the canvas. As we programmed it, the object would move
diagonally and then stop when it reached the right or bottom edge of the canvas
(the system won’t move an object past the canvas boundaries).

If you instead wanted the object to reappear at the top-left corner after it reaches the
bottom right, you could define a response to the Ball.EdgeReached event shown in
Figure 17-6.

Figure 17-6. Making the ball reappear at the top-left corner when it reaches an edge

EdgeReached (an event that is applicable only for sprites and balls) is triggered
when the Ball hits any edge of the canvas. This event handler, combined with the
diagonal movement specified with the previously described timer event, will cause
the ball to move diagonally from top left to bottom right, pop back up to the top
left when it reaches the edge, and then do it all over again, forever (or until you tell it
otherwise).

Note that there is an argument, edge1, with the EdgeReached event. The argument
specifies which edge the ball reached, using the following directional numbering
scheme:

• North = 1

• Northeast = 2

• East = 3

• Southeast = 4

• South = –1

• Southwest = –2

• West = –3

• Northwest = –4

High-Level Animation Functions  255 

CollidingWith and NoLongerCollidingWith
Shooting games, sports, and other animated apps often rely on activity occurring
when two or more objects collide (e.g., a bullet hitting a target).

Consider a game, for instance, in which an object changes colors and plays an explo-
sion sound when it hits another object. Figure 17-7 shows the blocks for such an
event handler.

Figure 17-7. Making the ball change color and play an explosion sound when it hits another object

NoLongerCollidingWith provides the opposite event of CollidedWith. It is trig-
gered only when two objects have come together and then separated. So, for your
game, you might include blocks as shown in Figure 17-8.

Figure 17-8. Changing the color back and stopping the explosion noise when the objects separate

Note that both CollidedWith and NoLongerCollidingWith have an argument,
other. other specifies the particular object you collided with (or separated from).
This allows you to perform operations only when the object (e.g., Ball1) interacts
with a particular other object, as shown in Figure 17-9.

Figure 17-9. Only perform the response if Ball1 hit ImageSprite1

256  Chapter 17:  Creating Animated Apps

The component ImageSprite1 block is one we haven’t yet discussed. When you
need to compare components (to know which ones have collided), as in this ex-
ample, you must have some way to refer to a specific component. For this rea-
son, each component has a special block that refers to itself. So, in the drawer for
ImageSprite1, you’ll find the component ImageSprite1 block.

Interactive Animation
In the animated behaviors we’ve discussed so far, the end user isn’t involved. Of
course, games are interactive, with the end user playing a central role. Often, the end
user controls the speed or direction of an object with buttons or other user interface
objects.

As an example, let’s update the diagonal animation by allowing the user to stop and
start the diagonal movement. You can do this by programming a Button.Click event
handler to disable and reenable the timer event of the clock component.

By default, the Clock component’s timerEnabled property is checked. You can disable
it dynamically by setting it to false in an event handler. The event handler in Figure
17-10, for example, would stop the activity of a Clock timer on the first click.

Figure 17-10. Stopping the timer the first time the button is clicked

After the Clock1.TimerEnabled property is set to false, the Clock1.Timer event will
no longer trigger, and the ball will stop moving.

Of course, stopping the movement on the first click isn’t too interesting. Instead, you
could “toggle” the movement of the ball by adding an ifelse in the event handler
that either enables or disables the timer, as shown in Figure 17-11.

This event handler stops the timer on first click, and resets the button so that
it says “Start” instead of “Stop.” The second time the user clicks the button, the
TimerEnabled is false, so the “else” part is executed. In this case, the timer is enabled,
which gets the object moving again, and the button text is switched back to “Stop.”
For more information about ifelse blocks, see Chapter 18, and for examples of inter-
active animations that use the orientation sensor, see Chapters 5 and 23.

Specifying Sprite Animation Without a Clock Timer  257 

Figure 17-11. Adding an ifelse so that clicking the button starts and stops the movement of the ball

Specifying Sprite Animation Without a Clock Timer
The animation samples described so far use a Clock component and specify that an
object should move each time the Clock’s timer event is triggered. The Clock .Timer
event scheme is the most general method of specifying animation; other than mov-
ing an object, you could also have it change an object’s color over time, change
some text (to appear as though the app is typing), or have the app speak words at a
certain pace.

For object movement, App Inventor provides an alternative that doesn’t require
the use of a Clock component. As you may have noticed, the ImageSprite and Ball
components have properties for Heading, Speed, and Interval. Instead of defining a
Clock.Timer event handler, you can set these properties in the Component Designer
or Blocks Editor to control how a sprite moves.

To illustrate, let’s reconsider the example that moved a ball diagonally. The Heading
property of a sprite or ball has a range of 360 degrees, as seen in Figure 17-12.

180 deg. 0 deg.

90 deg.

270 deg.

Figure 17-12. The Heading property has a range of 360 degrees

258  Chapter 17:  Creating Animated Apps

If you set the Heading to 0, the ball will move left to right. If you set it to 90, it will
move bottom to top. If you set it to 180, it will move right to left. If you set it to 270, it
will move top to bottom.

Of course, you can set it to any number between 0 and 360. To move a ball diagonally
from top left to bottom right, you’d set the Heading to 315. You also need to set the
Speed property to a value other than 0. The Speed property works the same way as
moving objects with MoveTo: it specifies the number of pixels the object will move
per time interval, where the interval is defined by the object’s Interval property.

To try out these properties, create a test app with a Canvas and Ball and click
“Connect to Phone” to see your app. Then modify the Heading, Speed, and Interval
properties of the ball to see how it moves.

If you wanted the program to continually move from top left to bottom right and
then back, you’d initialize the ball’s Heading property to 315 in the Component
Designer. You’d then add the Ball1.EdgeReached event handler, shown in Figure
17-13, to change the ball’s direction when it reaches either edge.

Figure 17-13. Changing the ball’s direction when it reaches either edge

Summary
Animation is an object being moved or otherwise transformed over time, and App
Inventor provides some high-level components and functionality to facilitate it. By pro-
gramming the Clock component’s Timer event, you can specify any type of animation,
including object movement—the fundamental activity in almost any type of game.

The Canvas component allows you to define a subarea of the device’s screen in
which objects can move around and interact. You can put only two types of compo-
nents, ImageSprites and Balls, within a Canvas. These components provide high-
level functionality for handling events such as collisions and reaching a Canvas edge.
They also have properties—Heading, Speed and Interval—that provide an alternative
method of movement.

CHAPTER 18

Programming Your App to Make
Decisions: Conditional Blocks

Computers, even small ones like the phone in
your pocket, are good at performing thou-
sands of operations in just a few seconds.
Even more impressively, they can also make
decisions based on the data in their memory
banks and logic specified by the programmer.
This decision-making capability is probably
the key ingredient of what people think of as
artificial intelligence—and it’s definitely a very
important part of creating smart, interest-
ing apps! In this chapter, we’ll explore how to
build decision-making logic into your apps.

As we discussed in Chapter 14, an app’s behavior is
defined by a set of event handlers. Each event handler
executes specific functions in response to a particular
event. The response need not be a linear sequence of
functions, however; you can specify that some functions
be performed only under certain conditions. A game
app might check if the score has reached 100. A location-
aware app might ask if the phone is within the boundar-
ies of some building. Your app can ask such questions
and, depending on the answer, proceed down a certain
program branch (or direction).

Figure 18-1 depicts a flowchart of an event handler with
a conditional check.

When the event occurs, function A is performed no mat-
ter what. Then a decision test is performed. If the test
is true, B1 is performed. If it is false, B2 is performed. In
either case, the rest of the event handler (C) is completed.

A

C

Yes No

Condition true?

B1 B2

Event1

Figure 18-1. An event handler
that tests for a condition and
branches accordingly

260  Chapter 18:  Programming Your App to Make Decisions: Conditional Blocks

Because decision diagrams like the one in Figure 18-1 look something like trees, it is
common to say that the app “branches” one way or the other depending on the test
result. So, in this instance, you’d say, “If the test is true, the branch containing B1 is
performed.”

Testing Conditions with if and ifelse Blocks
App Inventor provides two types of conditional blocks (Figure 18-2): if and ifelse,
both of which are found in the Control drawer of the Built-In palette.

Figure 18-2. The if and ifelse conditional blocks

You can plug any Boolean expression into the “test” slot of these blocks. A Boolean
expression is a mathematical equation that returns a result of either true or false.
The expression tests the value of properties and variables using relational and logical
operators such as the ones shown in Figure 18-3.

Figure 18-3. Relational and logical operator blocks used in conditional tests

For both if and ifelse, the blocks you put within the “then-do” slot will only be
executed if the test is true. For an if block, if the test is false, the app moves on to
the blocks below it. If the ifelse test is false, the blocks within the “else-do” slot are
performed.

So, for a game, you might plug in a Boolean expression concerning the score, as
shown in Figure 18-4.

Programming an Either/Or Decision  261 

Figure 18-4. A Boolean expression used to test the score value

In this example, a sound file is played if the score goes over 100. Note that if the test
is false, no blocks are executed. If you want a false test to trigger an action, you can
use an ifelse block.

Programming an Either/Or Decision
Consider an app you could use when you’re bored: you press a button on your
phone, and it calls a random friend. In Figure 18-5, we use a random integer block
to generate a random number and then an ifelse block to call a particular phone
number based on that random number.

Figure 18-5. This ifelse block calls one of two numbers based on the randomly generated integer

In this example, random integer is called with arguments 1 and 2, meaning that the
returned random number will be 1 or 2 with equal likelihood. The variable RandomNum
stores the random number returned.

After setting RandomNum, the blocks compare it to the number 1 in the ifelse test. If
the value of RandomNum is 1, the app takes the first branch (then-do), and the phone
number is set to 111–1111. If the value is not 1, the test is false, so the app takes the
second branch (else-do), and the phone number is set to 222–2222. The app makes
the phone call either way because the call to MakePhoneCall is below the entire
ifelse block.

262  Chapter 18:  Programming Your App to Make Decisions: Conditional Blocks

Programming Conditions Within Conditions
Many decision situations are not binomial—that is, they don’t have just two out-
comes to choose from. For example, you might want to choose between more than
two friends in your Random Call program. To do this, you could place an ifelse within
the original else-do clause, as shown in Figure 18-6.

Figure 18-6. An ifelse condition is placed within the else-do of an outer condition

With these blocks, if the first test is true, the app executes the first then-do branch
and calls the number 111–1111. If the first test is false, the outer else-do branch is
executed, which immediately runs another test. So, if the first test (RandomNum=1)
is false, and the second (RandomNum=2) is true, the second then-do is executed, and
222–2222 is called. If both tests are false, the inner else-do branch at the bottom is
executed, and the third number (333–3333) is called.

Note that this modification only works because the to parameter of the random
integer call was changed to 3 so that 1, 2, or 3 is called with equal likelihood.

Placing one control construct within another is called nesting. In this case, you’d say the
blocks had a “nested if-else.” You can use such nested logic to provide more choices in
your Random Call app, and in general, to add arbitrary complexity to any app.

Programming Complex Conditions  263 

Programming Complex Conditions
Besides nesting questions, you can also specify tests that are more complex than a
simple equality test. For example, consider an app that vibrates when you (and your
phone) leave a building or some boundary. Such an app might be used by a person
on probation to warn him when he strays too far from his legal boundaries, or by par-
ents to monitor their children’s whereabouts. A teacher might use it to automatically
take roll (if all her students have an Android phone!).

For this example, let’s ask this question: is the phone within the boundary of Harney
Science Center at the University of San Francisco? Such an app would require a com-
plex test consisting of four different questions:

• Is the phone’s latitude less than the maximum latitude (37.78034) of the
boundary?

• Is the phone’s longitude less than the maximum longitude (–122.45027) of the
boundary?

• Is the phone’s latitude more than the minimum latitude (37.78016) of the
boundary?

• Is the phone’s longitude more than the minimum longitude (–122.45059) of the
boundary?

We’ll be using the LocationSensor component for this example. You should be able
to follow along here even if you haven’t been exposed to LocationSensor, but you
can learn more about it in Chapter 23.

You can build complex tests using the logical operators and, or, and not, which are
found in the Logic drawer. In this case, you’d start by dragging out an if block and an
and block and then placing the and block within the “test” slot of the if, as illustrated
in Figure 18-7.

Figure 18-7. An and block is placed within the “test” slot of the if block

You’d then drag out blocks for the first question and place them into the and block’s
“test” slot, as shown in Figure 18-8.

264  Chapter 18:  Programming Your App to Make Decisions: Conditional Blocks

Figure 18-8. When the blocks for the first test are placed into the and block, a new test slot opens

Note that as you fill a (sub-)test of the and block, a new test slot opens. If you fill
these slots with the other tests and place the entire ifelse within a LocationSensor
.LocationChanged event, you’ll have an event handler that checks the boundary, as
shown in Figure 18-9.

Figure 18-9. This event handler checks the boundary each time the location changes

With these blocks, each time the LocationSensor gets a new reading and its location
is within the boundary, the phone vibrates.

OK, so far this is pretty cool, but now let’s try something even more complicated
to give you an idea of the full extent of the app’s decision-making powers. What if
you wanted the phone to vibrate only when the boundary was crossed from in-
side to outside? Before moving ahead, think about how you might program such a
condition.

Our solution is to define a variable withinBoundary that remembers whether the
previous sensor reading was within the boundary or not, and then compares that
to each successive sensor reading. withinBoundary is an example of a Boolean

Programming Complex Conditions  265 

variable—instead of storing a number or text, it stores true or false. For this example,
you’d initialize it as false, as shown in Figure 18-10, meaning that the device is not
within USF’s Harney Science Center.

Figure 18-10. withinBoundary is initialized as false

The blocks can now be modified so that the withinBoundary variable is set on each
location change, and so that the phone vibrates only when it moves from inside to
outside the boundary. To put that in terms we can use for blocks, the phone should
vibrate when (1) the variable withinBoundary is true, meaning the previous read-
ing was inside the boundary, and (2) the new location sensor reading is outside the
boundary. Figure 18-11 shows the updated blocks.

Figure 18-11. These blocks cause the phone to vibrate only when it moves from within the boundary to
outside the boundary

Let’s examine these blocks more closely. When the LocationSensor gets a reading,
it first checks if the new reading is within the boundary. If it is, LocationSensor sets
the withinBoundary variable to true. Since we want the phone to vibrate only when
we are outside the boundary, no vibration takes place in this first branch.

266  Chapter 18:  Programming Your App to Make Decisions: Conditional Blocks

If we get to the else-do, we know that the new reading is outside the boundary. At
that point, we have to check the previous reading: if we’re outside the boundary,
we want the phone to vibrate only if the previous reading was inside the boundary.
withinBoundary tells us the previous reading, so we can check that. If it is true, we
vibrate the phone.

There’s one more thing we need to do once we’ve confirmed that the phone has
moved from inside to outside the boundary—can you think of what it is? We also
need to reset withinBoundary to false so the phone won’t vibrate again on the next
sensor reading.

One last note on Boolean variables: check out the two if tests in Figure 18-12. Are
they equivalent?

Figure 18-12. Can you tell whether these two if tests are equivalent?

The answer is “yes!” The only difference is that the test on the right is actually the
more sophisticated way of asking the question. The test on the left compares the
value of a Boolean variable with true. If withinBoundary contains true, you com-
pare true to true, which is true. If the variable contains false, you compare false
to true, which is false. However, just testing the value of withinBoundary, as in the
test on the right, gives the same result and is easier to code.

Summary
Is your head spinning? That last behavior was quite complex! But it’s the type of
decision making that sophisticated apps need to perform. If you build such behav-
iors part by part (or branch by branch) and test as you go, you’ll find that specifying
complex logic—even, dare we say, artificial intelligence—is doable. It will make your
head hurt and exercise the logical side of your brain quite a bit, but it can also be lots
of fun.

CHAPTER 19

Programming Lists of Data

As you’ve already seen, apps handle events and
make decisions; such processing is fundamen-
tal to computing. But the other fundamental
part of an app is its data—the information
it processes. An app’s data is rarely restricted
to single memory slots such as the score of a
game. More often, it consists of complex, inter-
related items that must be organized just as
carefully as the app’s functionality.

In this chapter, we’ll examine the way App Inventor handles data. You’ll learn the fun-
damentals of programming both static lists (in which the data doesn’t change) and
dynamic lists (in which the data is user-generated). Then you’ll learn how to deal with
even more complex data involving lists whose items are also lists.

Many apps process lists of data. For example, Facebook processes your list of friends.
A quiz app works with a list of questions and answers. A game might have a list of
characters or all-time high scores.

List variables work like text and number variables you’ve worked with, but instead of
the variable representing a single named memory cell, it represents a related set of
memory cells. Consider, for example, the list of phone numbers in Table 19-1.

Table 19-1. A list variable represents
a set of memory cells

111–2222

333–4444

555–6666

The elements of a list are accessed using an index. An index is a position in a list, so
index 1 of the list in Table 19-1 refers to 111–2222, index 2 refers to 333–4444, and
index 3 refers to 555–6666.

App Inventor provides blocks for creating lists, adding elements to lists, selecting a
particular item from a list, and applying operations to an entire list. Let’s start with
how we create a list.

268  Chapter 19:  Programming Lists of Data

Creating a List Variable
You create a list variable in the Blocks Editor using a def variable block and a make
a list block. For example, suppose you were writing an app to text a list of phone
numbers with one click. You create the phone numbers list in the following manner:

1. From the Built-In Palette, drag a def variable block (Figure 19-1) into the program
area.

Figure 19-1. A def variable block

2. Click the text “variable” and change the name to “phoneNumbers”, as shown in
Figure 19-2.

Figure 19-2. Renaming the variable to phoneNumbers

3. From the Lists palette, drag out a make a list block and plug it into the definition
block, as shown in Figure 19-3. This tells App Inventor that the variable will store
a list of data as opposed to a single value.

Figure 19-3. Defining phoneNumbers as a list using the make a list block

4. Finally, drag in some text blocks, enter the desired phone numbers, and plug
them into the “item” slots in the make a list block. Note that a new “item” slot
opens up at the bottom of make a list each time you add a new element to the
list, as shown in Figure 19-4.

Figure 19-4. As each item is added to the list, a new slot opens up

Selecting an Item in a List  269 

You can plug any type of data into an “item” slot, but in this case, the items should be
text objects, not numbers, because phone numbers have dashes and other format-
ting symbols that you can’t put in a number object, and you won’t be performing
any calculations on the numbers (in which case, you would want number objects
instead).

The blocks in Figure 19-4 define a variable named phoneNumbers. Any variables you
define are created when the app launches, so memory slots like the ones in Table 19-1
will be created and filled when the app starts. Once you have a variable list, it’s time
to start working with the data in that list.

Selecting an Item in a List
Your app can access particular items of a list with the select list item block and by
specifying an index in the list. The index indicates the position of an item within a list.
So, if a list has three items, you can access the items with indices 1, 2, and 3. Figure
19-5 shows the blocks that select the second item of a list.

Figure 19-5. Selecting the second item of a list

With select list item, you plug in the list you want in the first slot, and the index you
want in the second slot. The blocks in Figure 19-5 tell the app to select the second
element of the list phoneNumbers. If you were selecting from the phoneNumbers list
defined in Table 19-1, the result would be “333–4444.”

Selecting an item in a list is just the first step—once you’ve selected the item, you
can do a variety of things with it. We’ll look at some examples next.

Using an Index to Traverse a List
In many apps, you’ll define a list of data and then allow the user to step through (or
traverse) it. The Presidents Quiz in Chapter 8 provides a good example of this: in that
app, when the user clicks a Next button, the next item is selected from a list of ques-
tions and displayed.

But how do you select the next item in a list? Our example in Figure 19-5 selected
item 2 from phoneNumbers. When you traverse a list, the item number you’re select-
ing changes each time; it’s relative to your current position in the list. Therefore, you
need to define a variable to represent that current position. index is the common
name for such a variable, and it is usually initialized to 1 (the first position in the list),
as shown in Figure 19-6.

270  Chapter 19:  Programming Lists of Data

Figure 19-6. Initializing the variable index to 1

When the user does something to move to the next item, you increment the index
variable by adding a value of 1 to it, and then select from the list using that incre-
mented value. Figure 19-7 shows the blocks for doing this.

Figure 19-7. Incrementing the index value and using the incremented value to select the next list item

Example: Traversing a List of Paint Colors
Let’s look at an example app that lets the user peruse each potential paint color for
his house by clicking a button. Each time he clicks, the button’s color changes. When
the user makes it through all of the possible colors, the app takes him back to the
first one.

For this example, we’ll use some basic colors. However, you could customize the code
blocks to iterate through any set of colors. For more information on colors, see the
App Inventor documentation at http://appinventor.googlelabs.com/learn/reference/
blocks/colors.html.

Our first step is to define a list variable for the colors list and initialize it with some
paint colors as items, as depicted in Figure 19-8.

Figure 19-8. Initializing the list colors with a list of paint colors

Next, define an index variable that tracks the current position in the list. It should
start at 1. You could give the variable a descriptive name like currentColorIndex,
but if you aren’t dealing with multiple indexes in your app, you can just name it
index, as shown in Figure 19-9.

Using an Index to Traverse a List  271 

Figure 19-9. Using the index variable, which is initialized to 1, to track the current position in a list

The user traverses to the next item (color) in the list by clicking the ColorButton.
When he clicks, the index should be incremented and the BackgroundColor of the
button should change to the currently selected item, as shown in Figure 19-10.

Figure 19-10. Letting the user traverse the color list by clicking a button—changing the button color
with each click

Let’s assume the button’s background is initially set to Red in the Component
Designer. The first time the button is clicked, index will change from its initial value
of 1 to 2, and the button’s background color will change to the second item in the
list, Green. The second time the user clicks, the index will change from 2 to 3, and the
background color will switch to Blue.

But what do you think will happen on the next click?

If you said there would be an error, you’re right! index will become 4 and the app will
try to select the fourth item in the list, but the list only has three items. The app will
force close, or quit, and the user will see an error message like the one in Figure 19-11.

Figure 19-11. The error message displayed when the app tries to select the fourth item from a three-
item list

272  Chapter 19:  Programming Lists of Data

Obviously, that message is not something you want your app’s users to see. To avoid
that problem, add an if block to check whether the last color in the list has been
reached. If it has, the index can be changed back to 1 so that the first color is again
displayed, as shown in Figure 19-12.

Figure 19-12. Using the if test to check for whether the index value is larger than the length of the list,
and reset it to 1 if the test returns true

When the user clicks the button, the index is incremented and then checked to see if
its value is too large. The index is compared to length of list, not 3, so your app will
work even if you add items to the list. By checking if the index is greater than your
list length (versus checking if it is greater than the specific number 3), you’ve elimi-
nated a code dependency in your app. A code dependency is a programming term
for instances when you program aspects of your app too specifically, such that if you
change something in one place (e.g., the items in your list), you’ll have to hunt down
all the places in your app where you use that list and change those blocks as well.

As you can imagine, these kinds of dependencies could get messy very quickly, and
they generally lead to many more bugs for you to chase down as well. In fact, the
design for our House Paint Color app contains another code dependency as we
currently have it programmed—can you figure out what it is?

If you changed the first color in your list from Red to some other color, the app
won’t work correctly unless you also remembered to change the initial Button
.BackgroundColor you set in the Component Designer. The way to eliminate this
code dependency is to set the initial ColorButton.BackgroundColor to the first
color in the list rather than to a specific color. Since this change involves behavior
that happens when your app first opens, you do this in the Screen.Initialize event
handler that is invoked when an app is launched, as illustrated in Figure 19-13.

Creating Input Forms and Dynamic Lists   273 

Figure 19-13. Setting the BackgroundColor of the button to the first color in the list when the app
is launched

Creating Input Forms and Dynamic Lists
The previous House Paint Color app involved a static list: one whose elements are
defined by the programmer (you) and whose items don’t change unless you change
the blocks themselves. More often, however, apps deal with dynamic lists: lists that
change based on the end user entering new items, or new items being loaded in
from a database or web information source. In this section, we’ll discuss an example
Note Taker app, one in which the user enters notes in a form and can view all of her
previous notes.

Defining a Dynamic List
Just as with a static list, you define a dynamic list with the make a list block. But with
a dynamic list, you don’t add any predefined items in the list definition. For example,
consider a Note Taker app. You would define the dynamic list of notes with the defini-
tion in Figure 19-14.

Figure 19-14. The blocks to define a dynamic list don’t contain any predefined items

Adding an Item
The first time someone launches the app, the notes list is empty. But when the user
enters some data in a form and clicks Submit, new notes will be added to the list. The
form might be as simple as the one shown in Figure 19-15.

Figure 19-15. Using a form to add new items to the notes list

274  Chapter 19:  Programming Lists of Data

When the user enters a note and clicks the Submit button, the app calls the add items
to list function to add the newly entered item to the list, as shown in Figure 19-16.

Figure 19-16. Calling add items to list to add the new note when the user clicks the SubmitButton

The add item to list block appends the item to the end of the list. Each time the user
clicks the SubmitButton, a new note is added.

You’ll find the add item to list block in the List drawer. Be careful: there is also an
append to list block, but that one is a fairly rare block for appending one list to
another.

Displaying a List
The contents of list variables like notes are not visible to the user; you’ll recall that a
variable is a way for the app to remember information that is not necessarily shown
to the user. The blocks in Figure 19-16 will add items to the list on each button
click submit, but the user will not see any feedback that it is happening until you
program more blocks to actually display the contents of the list.

The simplest way to display a list in your app’s user interface is to use the same
method you use for displaying numbers and text: put the list in the Text property
of a Label component, as illustrated in Figure 19-17.

Figure 19-17. Displaying the list to the user within the Text property of the NotesListLabel

Creating Input Forms and Dynamic Lists   275 

Unfortunately, this simple method of displaying a
list isn’t very elegant; it puts the list within paren-
theses, with each item separated by a space and
not necessarily on the same line. For instance, if
the user entered, “Will I ever finish this book?” as
the first note, and “I forget what my son looks like!”
as the second, the app would display the notes list
as shown in Figure 19-18.

If you’ve already completed the “Amazon at the
Bookstore” app (Chapter 13), this problem will be
familiar. In Chapter 20, you’ll learn how to display a
list in a more sophisticated fashion.

Removing an Item from a List
You can remove an item from a list with the remove list item block, shown in Figure 19-19.

Figure 19-19. Removing an item from a list

The blocks in Figure 19-19 remove the second item from the list named notes.
Generally, however, you won’t want to remove a fixed item (e.g., 2), but instead will
allow the user to choose the item to remove.

ListPicker is a user interface component that can be used for removing items. List
Picker comes with an associated button. When the button is clicked, the ListPicker
displays the items of a list and allows the user to choose one. When the user chooses
an item, the app can remove it.

ListPicker is easy to program if you understand its two key events, BeforePicking
and AfterPicking, and its two key properties, Elements and Selection, as listed in
Table 19-2.

Figure 19-18. The defult list display is
not very elegant

276  Chapter 19:  Programming Lists of Data

Table 19-2. Two key events of the ListPicker component and their properties

Event Property

BeforePicking: Triggered when button is 
clicked.

Elements: The list of choices.

AfterPicking: Triggered when user makes a 
choice.

Selection: The user’s choice.

The ListPicker.BeforePicking event is triggered when the user clicks the
ListPicker’s associated button but before the choices are listed. In the ListPicker
.BeforePicking event handler, you’ll set the ListPicker.Elements property to a list
variable. For the Note Taker app, you’d set Elements to the notes variable that con-
tains your list of notes, as shown in Figure 19-20.

Figure 19-20. The Elements property of ListPicker1 is set to the list contained in notes

With these blocks, the items of the list notes will appear in the ListPicker. If there
were two notes, it would appear as shown in Figure 19-21.

Figure 19-21. The list of notes appears in the ListPicker

When the user chooses an item in the list, the ListPicker.AfterSelection event is
triggered. In this event handler, you can access the user’s selection in the ListPicker
.Selection property.

Recall, however, that the remove item from list block expects an index (list posi-
tion), not an item. Unfortunately, the Selection property of the ListPicker is the
actual data (the note item), not the index, and the ListPicker component doesn’t
provide direct access to the index of the list (this will certainly be added in later ver-
sions of App Inventor).

The workaround is to take advantage of another block in the list drawer, position in
list. Given some text, this function will return the position of the first match to that
text in a list. Using position in list, the ListPicker1.AfterPicking event handler can
remove the selected item, as the blocks in Figure 19-22 show.

Lists of Lists  277 

Figure 19-22. Using the position in list block to find the index of the item to remove

When AfterPicking is triggered, ListPicker1.Selection contains the text of the user’s
choice (e.g., “Will I ever finish this book?”). The goal is to find the index of that selec-
tion in the list notes in order to remove it, so position in list is called. If the user’s
selection was “Will I ever finish this book?”, position in list will return 1 because it’s
the first item. This number is put into the variable removeIndex, which is then used
as the index in the call to remove list item.

Here’s a question to chew on before reading further: do you think this scheme will
work in all cases?

The answer is that the scheme works fine unless there is duplicate data in the list. Say
the user has entered, “I’m having a great day” as both his second and tenth notes. If
he clicks the remove (ListPicker) button and chooses the tenth item, the second
will be removed instead of the tenth. position in list only returns the index for the
selected item and stops there, so you never find out that the tenth item is the same
and should be removed from the list as well. You’d have to include some conditional
checks (see Chapter 18) to loop through the list to see if there were any other entries
that also matched the selected item, and then remove those as well.

Lists of Lists
The items of a list can be numbers, text, colors, or Boolean values (true/false). But the
items of a list can also be lists. You’ll commonly see such complex data structures. For
example, a list of lists could be used to convert the Presidents Quiz from Chapter 8
into a multiple-choice quiz. Let’s look again at the Presidents Quiz’s basic structure,
which is a list of questions and a list of answers, as shown in Figure 19-23.

278  Chapter 19:  Programming Lists of Data

Figure 19-23. A list of questions and a list of answers

Each time the user answers a question, the app checks to see if it is correct by com-
paring the answer to the current item in the AnswerList.

To make the quiz multiple choice, you’d need to keep a list of choices for each answer
to each question. The multiple-choice list is represented as a variable list of lists,
defined by placing three make a list blocks within an outer make a list block, as
demonstrated in Figure 19-24.

Figure 19-24. A list of lists is formed by inserting make a list blocks as items within an outer make a
list block

Lists of Lists  279 

Each item in the variable answerChoices is itself a list containing three items. If you
select an item from answerChoices, the result is a list. Now that you’ve populated
your multiple-choice answers as lists, how would you display that to the user?

As with the Note Taker app, you could use a ListPicker to present the choices to the
user. If the index were named currentQuestionIndex, the ListPicker.BeforePicking
event would appear as shown in Figure 19-25.

Figure 19-25. Using the List Picker to present the list of choices to the user

These blocks would take the current sublist of answerChoices and let the user
choose from it. So, if currentQuestionIndex were 1, the ListPicker would show
a list like the one in Figure 19-26.

Figure 19-26. The answer choices presented to the user for the second question

When the user chooses, you check the answer with the blocks shown in Figure 19-27.

Figure 19-27. Checking whether the user chose the correct answer

280  Chapter 19:  Programming Lists of Data

In these blocks, the user’s selection from the ListPicker is compared to the correct
answer, which is stored in a different list, AnswerList (since answerChoices provides
only the choices and does not denote the correct answer).

Summary
Lists are used in almost every app you can think of. Understanding how they work is
fundamental to programming. In this chapter, we explored one of the most common
programming patterns: using an index variable that begins at the front of the list and
is incremented until each list item is processed. If you can understand and customize
this pattern, you are indeed a programmer!

We then covered some of the other mechanisms for list manipulation, including typi-
cal forms for letting the user add and remove items. Such programming requires yet
another level of abstraction, as you have to envision the data—after all, your lists are
empty until the user puts something in them. If you can understand this, you might
even think of quitting your day job!

We concluded the chapter by introducing a complex data structure, a list of lists.
This is definitely a difficult concept, but we explored it using fixed data: the answer
choices for a multiple-choice quiz. If you mastered that and the rest of the chapter,
your final test is this: create an app that uses of a list of lists, but with dynamic data!
One example would be an app that allows people to create their own multiple-
choice quizzes, extending even further the MakeQuiz app in Chapter 10. Good luck!

While you think about how you’ll tackle that, understand that our exploration of lists
isn’t done. In the next chapter, we’ll continue the discussion and focus on list itera-
tion with a twist: applying functions to each item in a list.

CHAPTER 20

Repeating Blocks: Iteration

One thing computers are good at is repeating
operations—like little children, they never tire
of repetition. They are also very fast and can do
things like process your entire list of Facebook
friends in a microsecond.

In this chapter, you’ll learn how to program repetition with just a few blocks instead
of copying and pasting the same blocks over and over. You’ll learn how to do things
like send an SMS text to every phone number in a list and sort list items. You’ll also
learn that repeat blocks can significantly simplify an app.

Controlling an App’s Execution: Branching and Looping
In previous chapters, you learned that you define an app’s behavior with a set of
event handlers: events and the functions that should be executed in response. You
also learned that the response to an event is often not a linear sequence of functions
and can contain blocks that are performed only under certain conditions.

Repeat blocks are the other way in which an app behaves
nonlinearly. Just as if and ifelse blocks allow a program to
branch, repeat blocks allow a program to loop; that is, to
perform some set of functions and then jump back up in the
code and do it again, as illustrated in Figure 20-1.

When an app executes, a program counter working beneath
the hood of the app keeps track of the next operation to
be performed. So far, you’ve examined apps in which the
program counter starts at the top of an event handler and
(conditionally) performs operations top to bottom. With
repeat blocks, the program counter loops back up in the
blocks, continuously repeating functions.

Function 1

Function 2

Function 3

Figure 20-1. Repeat blocks
cause a program to loop

282  Chapter 20:  Repeating Blocks: Iteration

In App Inventor, there are two types of repeat blocks: foreach and while.foreach is
used to specify functions that should be performed on each item of a list. So, if you have
a list of phone numbers, you can specify that a text should be sent to each number in
the list.

The while block is more general than the foreach. With it, you can program blocks
that continually repeat until some arbitrary condition changes. while blocks can be
used to compute mathematical formulas such as adding the first n numbers or com-
puting the factorial of n. You can also use while when you need to process two lists
simultaneously; foreach processes only a single list at a time.

Repeating Functions on a List Using foreach
In Chapter 18, we discussed a Random Call app. Randomly calling one friend might
work out sometimes, but if you have friends like mine, they don’t always answer. A
different strategy would be to send a “Missing you” text to all of your friends and see
who responds first (or more charmingly!).

With such an app, clicking a button sends a text to more than one friend. One way to
implement this would be to simply copy the blocks for texting a single number, and
then copy and paste them for each friend you want to text, as shown in Figure 20-2.

Figure 20-2. Copying and pasting the blocks for each phone number to be texted

This “brute force” copy-paste method is fine if you have just a few blocks to repeat.
But data lists, such as the list of your friends, tend to change. You won’t want to have
to modify your app with the copy-paste method each time you add or remove a
phone number from your list.

The foreach block provides a better solution. You define a phoneNumbers list variable
with all the numbers and then wrap a foreach block around a single copy of the blocks
you want to perform. Figure 20-3 shows the foreach solution for texting a group.

Repeating Functions on a List Using foreach  283 

Figure 20-3. Using the foreach block to perform the same blocks for each item in the list

This code can be read as:

For each item (phone number) in the list phoneNumbers, set the Texting object’s
phone number to the item and send out the text message.

When you drag out a foreach block, you must specify the list to process by plugging
a reference into the “in list” parameter at the bottom of the block. In this case, the
global phoneNumbers block was dragged out of the My Definitions palette and
plugged in to provide the list of phone numbers to text.

At the top of the foreach block, you also provide a name for a placeholder variable
that comes with the foreach. By default, this placeholder is named “var.” You can
leave it that way or rename it. One common name for it is “item,” as it represents the
current item being processed in the list.

The blocks within the foreach are repeated for each item in the list, with the place-
holder variable (in this example, item) always holding the item currently being
processed. If a list has three items, the inner blocks will be executed three times. The
inner blocks are said to be subordinate to, or within, the foreach block. We say that
the program counter “loops” back up when it reaches the bottom block within the
foreach.

A Closer Look at Looping
Let’s examine the mechanics of the foreach blocks in detail, because understanding
loops is fundamental to programming. When the TextGroupButton is clicked and
the event handler invoked, the first operation executed is the set Texting1.Message to
block, which sets the message to “Missing you.” This block is only executed once.

The foreach block then begins. Before the inner blocks of a foreach are executed,
the placeholder variable item is set to the first number in the phoneNumbers list
(111–1111). This happens automatically; the foreach relieves you of having to manu-
ally call select list item. After the first item is selected into the variable item, the
blocks within the foreach are executed for the first time. The Texting1.PhoneNumber
property is set to the value of item (111–1111), and the message is sent.

284  Chapter 20:  Repeating Blocks: Iteration

After reaching the last block within a foreach (the Texting.SendMessage block), the
app “loops” back up to the top of the foreach and automatically puts the next item
in the list (222–2222) into the variable item. The two operations within the foreach
are then repeated, sending the “Missing you” text to 222–2222. The app then loops
back up again and sets item to the last item in the list (333–3333). The operations are
repeated a third time, sending the third text.

Because the final item in the list—in this case, the third—has been processed, the
foreach looping stops at this point. We say that control “pops” out of the loop,
which means that the program counter moves on to deal with the blocks below the
foreach. In this example, there are no blocks below it, so the event handler ends.

Writing Maintainable Code
To the end user, the foreach solution just described behaves exactly the same as the
“brute force” method of copying and then pasting the texting blocks. From a pro-
grammer’s perspective, however, the foreach solution is more maintainable and can
be used even if the data (the phone list) is entered dynamically.

Maintainable software is software that can be changed easily without introducing
bugs. With the foreach solution, you can change the list of friends who are sent
texts by modifying only the list variable—you don’t need to change the logic of your
program (the event handler) at all. Contrast this with the brute force method, which
requires you to add new blocks in the event handler when a new friend is added.
Anytime you modify a program’s logic, you risk introducing bugs.

Even more important, the foreach solution would work even if the phone list was
dynamic—that is, one in which the end user, not just the programmer, could add
numbers to the list. Unlike our sample, which has three particular phone numbers
listed in the code, most apps work with dynamic data that comes from the end user
or some other source. If you redesigned this app so that the end user could enter the
phone numbers, you would have to use a foreach solution, because when you write
the program, you don’t know what numbers to put in the brute force solution.

A Second foreach Example: Displaying a List
When you want to display the items of a list on the phone, you can plug the list into
the Text property of a Label, as shown in Figure 20-4.

Figure 20-4. The simple way to display a list is to plug it directly into a label

A Second foreach Example: Displaying a List  285 

When you plug a list directly into a Text property of a Label, the list items are
displayed in the label as a single row of text separated by spaces and contained in
parentheses:

(111–1111 222–2222 333–3333)
The numbers may or may not span more than one line, depending on how many
there are. The user can see the data and perhaps comprehend that it’s a list of phone
numbers, but it’s not very elegant. List items are more commonly displayed on sepa-
rate lines or with commas separating them.

To display a list properly, you need blocks that transform each list item into a single
text value with the formatting you want. Text objects generally consist of letters, dig-
its, and punctuation marks. But text can also store special control characters, which
don’t map to a character you can see. A tab, for instance, is denoted by \t. (To learn
more about control characters, check out the Unicode standard for text representa-
tion at http://www.unicode.org/standard/standard.html.)

In our phone number list, we want a newline character, which is denoted by \n. When
\n appears in a text block, it means “go down to the next line before you display the
next thing.” So the text object “111–1111\n222–2222\n333–3333” would appear as:

111–1111
222–2222
333–3333

To build such a text object, we use a foreach block and “process” each item by add-
ing it and a newline character to the PhoneNumberLabel.Text property, as shown in
Figure 20-5.

Figure 20-5. Using the foreach block to process the list and put a newline character before each item

Let’s trace the blocks to see how they work. As discussed in Chapter 15, tracing
shows how each variable or property changes as the blocks are executed. With a
foreach, we consider the values after each iteration; that is, each time the program
goes through the foreach loop.

286  Chapter 20:  Repeating Blocks: Iteration

Before the foreach, the PhoneNumbersLabel is initialized to the empty text. When
the foreach begins, the app automatically places the first item of the list (111–1111)
into the placeholder variable number. The blocks in the foreach then make text
with PhoneNumbersLabel.Text (the empty text), \n, and number, and set the result
into PhoneNumbersLabel.Text. Thus, after the first iteration of the foreach, the
pertinent variables store the values shown in Table 20-1.

Table 20-1. The values of the variables after the first iteration of foreach

number PhoneNumbersLabel.Text

111–1111 \n111–1111

Since the bottom of the foreach has been reached, control loops back up and the
next item of the list (222–2222) is put into the variable number. When the inner
blocks are repeated, make text concatenates the value of PhoneNumbersLabel
.Text (\n111–1111) with \n, and then with number, which is now 222–2222. After
this second iteration, the variables store the values shown in Table 20-2.

Table 20-2. The variable values after the second iteration of foreach

number PhoneNumbersLabel.Text

222–2222 \n111–1111\n222–2222

The third item of the list is then placed in number, and the inner block is repeated a
third time. The final value of the variables, after this last iteration, is shown in Table 20-3.

Table 20-3. The variable values after the final iteration

number PhoneNumbersLabel.Text

333–3333 \n111–1111\n222–2222\n333–3333

So, after each iteration, the label becomes larger and holds one more phone number
(and one more newline). By the end of the foreach, PhoneNumbersLabel.Text is set
so that the numbers will appear as:

111–1111
222–2222
333–3333

Repeating Blocks with while
The while block is a bit more complicated to use than foreach. The advantage of the
while block lies in its generality: foreach repeats over a list, but while can repeat
while any arbitrary condition is true. As a trivial example, suppose you wanted to text
every other person in your phone list. You couldn’t do it with foreach, but with while,
you could just increment the index by two instead of one each time.

Repeating Blocks with while   287 

As you learned in Chapter 18, a condition tests something and returns a value of ei-
ther true or false. while-do blocks include a conditional test, just like if blocks. If the
test of a while evaluates to true, the app executes the inner blocks, and then loops
back up and rechecks the test. As long as the test evaluates to true, the inner blocks
are repeated. When the test evaluates to false, the app “pops” out of the loop (like we
saw with the foreach block) and continues with the blocks below the while.

Using while to Synchronously Process Two Lists
A more instructive example of while and its generality involves situations in which
you need to process two lists in a synchronous fashion. For example, in the MakeQuiz
app (Chapter 10), you keep separate lists of the quiz questions and answers, along
with an index variable to keep track of the current question number. To display each
question-answer pair together, you need to iterate through the two lists in a synchro-
nous fashion, grabbing the indexth item of each. foreach only allows for traversing
a single list, but with a while loop, you can use the index to grab an item from each
list. Figure 20-6 illustrates using a while block to display the question-answer pairs
on separate lines.

Figure 20-6. Using a while loop to display the question-answer pairs on separate lines

Because a while is used instead of a foreach, the blocks explicitly initialize the index,
check for the end of the list, select the items in each loop, and increment the index.

288  Chapter 20:  Repeating Blocks: Iteration

Using while to Compute a Formula
Here’s another example of while that repeats operations but has nothing to do with
a list. What do you think the blocks in Figure 20-7 do, at a high level? One way to fig-
ure this out is to trace each block (see Chapter 15 for more on tracing), tracking the
value of each variable as you go.

Figure 20-7. Can you figure out what these blocks are doing?

The blocks within the while loop will be repeated while the variable number is less
than or equal to the variable N. For this app, N is set to a number that the end user
enters in a text box (NTextBox). Say the user entered a 3. The variables of the app
would look like Table 20-4 when the while block is reached.

Table 20-4. This is how the variables look when the while block is reached

N number total

3 1 0

The while block first asks: is number less than or equal to (<=) N? The first time this
question is asked, the test is true, so execution proceeds within the while block.
total is set to itself (0) plus number (1), and number is incremented. After the first
iteration of the blocks within the while, the variable values are as listed in Table 20-5.

Table 20-5. The variable values after the first iteration of the blocks within the while block

N number total

3 2 1

Summary  289 

On second iteration, the test “number<=N” is still true (2<=3), so the inner blocks are
executed again. total is set to itself (1) plus number (2). number is incremented. When
this second iteration completes, the variables are as listed in Table 20-6.

Table 20-6. The variable values after the second iteration

N number total

3 3 3

The app loops back up again and tests the condition. Once again, it is true (3<=3),
so the blocks are executed a third time. Now total is set to itself (3) plus number (3),
so it becomes 6. number is incremented to 4, as shown in Table 20-7.

Table 20-7. The values after the third iteration

N number total

3 4 6

After this third iteration, control loops back one more time. Now the test
“number<=N”, or 4<=3, evaluates to false. Thus, the inner blocks of the while are not
executed again, and the event handler completes.

So what did these blocks do? They performed one of the most fundamental math-
ematical operations: counting numbers. Whatever number the user enters, the app
will report the sum of the numbers 1..N, where N is the number entered. In this
example, we assumed the user had entered 3, so the app came up with a total of 6. If
the user had entered 4, the app would have calculated 10.

Summary
Computers are good at repeating the same function over and over. Think of all the
bank accounts that are processed to accrue interest, all the grades processed to com-
pute students’ grade point averages, and countless other everyday examples where
computers use repetition to perform a task.

App Inventor provides two blocks for repeating operations. The foreach block ap-
plies a set of functions to each element of a list. By using it, you can design process-
ing code that works on an abstract list instead of concrete data. Such code is more
maintainable, and it’s required if the data is dynamic.

Compared to foreach, while is more general: you can use it to process a list, but you
can also use it to synchronously process two lists or compute a formula. With while,
the inner blocks are performed continuously while a certain condition is true. After the
blocks within the while are executed, control loops back up and the test condition is
tried again. Only when the test evaluates to false does the while block complete.

CHAPTER 21

Defining Procedures: Reusing Blocks

Programming languages like App Inventor provide a
base set of built-in functionality—in App Inventor’s
case, a base set of blocks. Programming languages
also provide a way to extend that functionality by
adding new functions (blocks) to the language. In App
Inventor, you do this by defining procedures—named
sequences of blocks—that your app can call just as it
calls App Inventor’s predefined blocks. As you’ll see in
this chapter, being able to create such abstractions is
very important for solving complex problems, which is
the cornerstone of building truly compelling apps.

When parents tell their child, “Go brush your teeth
before bed,” they really mean “take your toothbrush
and toothpaste from the cabinet, squeeze out some
toothpaste onto the brush, swivel the brush on
each tooth for 10 seconds (ha!),” and so on. “Brush
your teeth” is an abstraction: a recognizable name for a sequence of lower-level
instructions. In this case, the parents are asking the child to perform the instructions
that they’ve all agreed mean “brush your teeth.”

In programming, you can create such named sequences of instructions. Some pro-
gramming languages call them functions or subprograms. In App Inventor, they’re
called procedures. A procedure is a named sequence of blocks that can be called from
any place in an app.

Figure 21-1 is an example of a procedure whose job is to find the distance, in miles,
between two GPS coordinates you send to it.

292  Chapter 21:  Defining Procedures: Reusing Blocks

Figure 21-1. Procedure for computing the distance between points

Don’t worry about the internals of this procedure too much just yet; just realize that
procedures like this let you extend the language by which you design and build
programs. If every parent had to explain the steps of “brush your teeth” to his or her
child each night, that kid might not make it to the fifth grade. It’s much more effi-
cient to just say, “Brush your teeth,” and everyone can move on with getting to bed at
a reasonable hour.

Similarly, once you define the procedure distanceBetweenPoints, you can ignore
the details of how it works and simply refer to the procedure’s name (or call it) when
designing or coding a larger app. This type of abstraction is key to solving large prob-
lems and lets us break down a large software project into more manageable chunks
of code.

Procedures also help reduce errors because they eliminate redundancy in your
code. With procedures, you can put a chunk of code in one place and then call it
from various places in your app. So, if you’re building an app that needs to know
the minimum distance between your current location and 10 other spots, you don’t
need to have 10 copies of the blocks shown in Figure 21-1. Instead, you just define
the procedure and then call it whenever you need it. The alternative—copying and
pasting blocks—is much more error-prone because when you make a change, you
have to find all the other copies of those blocks and change each one in the same
way. Imagine trying to find the 5–10 places where you pasted a particular chunk of
code in an app with 1,000 lines or blocks! Instead of forcing you to copy and paste, a
procedure lets you encapsulate blocks in one place.

Procedures also help you build up a library of code that can be reused in many apps.
Even when building an app for a very specific purpose, experienced programmers
are always thinking of ways to reuse parts in other apps should the need arise. Some
programmers never even create apps, but instead focus solely on building reusable
code libraries for other programmers to use in their apps!

Eliminating Redundancy  293 

Eliminating Redundancy
Take a look at the code blocks in Figure 21-2. See if you can you identify the redun-
dant ones.

Figure 21-2. A Note Taker app with redundant code

The redundant blocks are the ones involving a foreach block (actually the foreach
and the set NotesLabel.Text to above it). In all three foreach instances, the block’s
job is to display the notes list. In this app, this behavior needs to take place when a
new item is added, when an item is removed, and when the list is loaded from the
database at application launch.

When experienced programmers see such redundancy, a bell goes off in their heads,
probably even before they’ve copied and pasted the blocks in the first place. They
know that it’s best to encapsulate such redundancy into a procedure, both to make
the program more understandable and so that changes will be much easier later.

So an experienced programmer would create a procedure, move the redundant
blocks into it, and then call the procedure from the three places containing the redun-
dant blocks. The app will not behave any differently, but it will be easier to maintain
and easier for other programmers to work with. Such code (block) reorganization is
called refactoring.

294  Chapter 21:  Defining Procedures: Reusing Blocks

Defining a Procedure
Let’s build a procedure to do the job of the redundant code blocks from Figure 21-2. In
App Inventor, you define a procedure in a manner similar to how you define variables.
From the Definition drawer, drag out either a to procedure block or a to procedure
with result block. Use the latter if your procedure should calculate some value and
return it (we’ll discuss this approach a bit later in the chapter).

After dragging out a to procedure block, you can change its name from the default
“procedure” by clicking the word “procedure” and typing the new name. The redun-
dant blocks we’re refactoring performed the job of displaying a list, so we’ll name the
procedure displayList, shown in Figure 21-3.

Figure 21-3. Giving the procedure a name

The next step is to add the blocks within the procedure. In this case, we’re using
blocks that already exist, so we’ll drag one of the original redundant blocks out of its
event handler and place it within the to displayList block, as shown in Figure 21-4.

Figure 21-4. The displayList procedure encapsulates the redundant code

We can now display the notes list using a procedure that you can easily call from
elsewhere in your app!

Calling a Procedure  295 

Calling a Procedure
Procedures, like displayList and “brush your teeth,” are entities with the potential
to perform a task. However, they’ll only perform that task if they are called upon to
do so. Thus far, we’ve created a procedure but haven’t called it. To call a procedure
means to invoke it, or to make it happen.

In App Inventor, you call a procedure by dragging out a call block from the My
Definitions drawer. Recall that the My Definitions drawer is empty when you first
begin an app. Each time you define something, new blocks appear in it. When you
define a variable, blocks to set and access the variable’s value are added. When you
define a procedure, a call block is added, as shown in Figure 21-5.

Figure 21-5. A call block appears in “My Definitions” when you define a procedure

You use call blocks all the time to call App Inventor’s predefined functions, like
Ball.MoveTo and Texting.SendMessage. When you define a procedure, you have
in essence created your own block; you’ve extended the App Inventor language. The
new call block lets you invoke your creation.

For the Note Taker app sample, you’d drag out three call displayList blocks and use
them to replace the redundant code in the three event handlers. For instance, the
ListPicker1.AfterPicking event handler (for deleting a note) should be modified as
shown in Figure 21-6.

Figure 21-6. Using the displayList call to invoke the blocks now in the procedure

296  Chapter 21:  Defining Procedures: Reusing Blocks

The Program Counter
To understand how the call block works, think of an app as having a pointer that
steps through the blocks performing functions. In computer science, this pointer is
called the program counter.

When the program counter is performing the blocks within an event handler and
it reaches a call block, it jumps over to the procedure and executes the blocks in it.
When the procedure completes, the program counter jumps back to its previous
location (the call block) and proceeds from there. So, for the Note Taker example,
the remove list item block is performed; then the program counter jumps to the
displayList procedure and performs its blocks (setting the NotesLabel.Text to the
empty text, and the foreach); and finally the program counter returns to perform the
TinyDB1.StoreValue block.

Adding Parameters to Your Procedure
The displayList procedure allows redundant code to be refactored into a single
place. The app is easier to understand because you can read the event handlers at a
high level and generally ignore the details of how a list is displayed. It is also helpful
because you may decide to modify how you display the list, and the procedure allows
you to make such a modification in a single place (instead of three).

The displayList procedure has limits in terms of its general usefulness, however.
The procedure works for a specific list (notes) and displays that list in a specific label
(NotesLabel). You couldn’t use it to display a different data list—say, a list of the
app’s users—because it is defined too specifically.

App Inventor and other languages provide a mechanism called parameters for mak-
ing procedures more general. Parameters comprise the information a procedure
needs to do its job—the specifics of how the procedure should be performed. In our
bedtime tooth-brushing example, you might define “toothpaste type” and “brushing
time” as parameters of the procedure “brush your teeth.”

You define parameters for a procedure by dragging out a name block from the
Definition drawer and plugging it into a procedure slot labeled “arg.” For the display
List procedure, we would define a parameter named “list,” as shown in Figure 21-7.

Adding Parameters to Your Procedure  297 

Figure 21-7. The procedure now accepts a list as a parameter

Even with the parameter defined, the blocks still refer directly to the specific list
notes (it’s plugged into the “in list” slot of the foreach). Because we want the pro-
cedure to use the list we send in as a parameter, we replace the reference to global
notes with a reference to value list, as demonstrated in Figure 21-8.

Figure 21-8. Now the foreach will use the list sent in

The new version of the procedure is more generic: whatever calls displayList can
now send it any list, and displayList will display it. When you add a parameter to
a procedure, App Inventor automatically puts a corresponding slot in the call block.
So, when the parameter list is added to displayList, the call blocks to display-
List look like Figure 21-9.

298  Chapter 21:  Defining Procedures: Reusing Blocks

Figure 21-9. Calling displayList now requires you to specify which list to display

The name list within the procedure definition is called a formal parameter. The cor-
responding slot within the call block is called an actual parameter. When you call a
procedure from somewhere in the app, you must supply an actual parameter for
each formal parameter of the procedure.

For the Note Taker app, you’d add a reference to the notes list as the actual param-
eter. Figure 21-10 shows how ListPicker.AfterSelection should be modified.

Figure 21-10. Calling the displayList with notes sent as the actual parameter

Now when displayList is called, the list notes is sent over to the procedure and
placed in the parameter list. The program counter proceeds to execute the blocks
in the procedure, referring to the parameter list but really working with the variable
notes.

Because of the parameter, the procedure displayList can now be used with any list,
not just notes. For example, if the Note Taker app was shared among a list of users
and you wanted to display the list, you could call displayList and send it the user
List, as shown in Figure 21-11.

Figure 21-11. The displayList procedure can now be used to display any list, not just notes

Returning Values from a Procedure  299 

Returning Values from a Procedure
There is still one issue with the displayList procedure in terms of its reusability—
can you figure out what it is? As it’s currently written, it can display any list of data,
but it will always display that data in the label NotesLabel. What if you wanted the
list to be displayed in a different user interface object (e.g., you had a different label
for displaying the userList)?

One solution is to reconceptualize the procedure—to change its job from displaying
a list in a particular label to simply returning a text object that can be displayed any-
where. To do this, you’ll use a procedureWithResult block, shown in Figure 21-12,
instead of the procedure block.

Figure 21-12. The procedureWithResult block

You’ll notice that, when compared to the procedure block, the procedure-
WithResult block has an extra slot at the bottom. You place a variable in this slot and
it’s returned to the caller. So, just as the caller can send data to a procedure with a
parameter, a procedure can send data back with a return value.

Figure 21-13 shows the reworked version of the preceding procedure, now using a
procedureWithResult block. Note that because the procedure is now doing a differ-
ent job, its name is changed from displayList to convertListToText.

Figure 21-13. convertListToText returns a text object that the caller can place in any label

300  Chapter 21:  Defining Procedures: Reusing Blocks

In the blocks shown in Figure 21-13, a variable displayText is defined to hold the
text as the procedure iterates through each item of the list. This text variable replaces
the overly specific NotesLabel component that was previously being used. When the
foreach completes, the variable displayText contains the list items, with each item
separated by a newline character, \n (e.g., “item1\nitem2\item3”). This displayText
variable is then plugged into the return value slot.

When a procedureWithResult is defined, its corresponding call blocks look different
than those for a procedure. Compare the call to convertListToText with the call to
the displayList in Figure 21-14.

Figure 21-14. The call on the right returns a value and so must be plugged into something

The difference is that the call convertListToText has a plug on the left. This is
because when the call is executed, the procedure will run through its task and then
return a value to the call block. That return value must be plugged into something.

In this case, the callers to displayList can plug that return value into any label they
want. For the notes example, the three event handlers that need to display a list will
call the procedure as shown in Figure 21-15.

Figure 21-15. Converting the list notes into text and displaying it in NotesLabel

The important point here is that, because the procedure is completely generic and
doesn’t refer to any lists or labels specifically, another part of the app could use
convertListToText to display any list in any label, as exemplified in Figure 21-16.

Figure 21-16. The procedure is no longer tied to a particular Label component

Reusing Blocks Among Apps  301 

Reusing Blocks Among Apps
Reusing code blocks through procedures need not be restricted to a single app.
There are many procedures, like convertListToText, that could be used in just
about any app you create. In practice, organizations and programming communities
build up code libraries of procedures for their domains of interest—for example, a
code library of animation procedures.

Typically, programming languages provide an “import” utility that allows for includ-
ing library code in any app. App Inventor doesn’t yet have such a utility, but one is
being developed. In the meantime, you can create procedures in a special “library
app” and begin new app development by saving a new copy of that app and working
from it.

A Second Example: distanceBetweenPoints
With the displayList (convertListToText) example, we characterized procedure
definition as a way to eliminate redundant code: you start writing code, find re-
dundancies as you go along, and refactor your code to eliminate them. Generally,
however, a software developer or team will design an app from the beginning with
procedures and reusable parts in mind. This sort of planning can save you significant
time as the project progresses.

Consider an app to determine the local hospital closest to one’s current location,
something that would come in very handy in case of an emergency. Here’s a high-
level design description of the app:

When the app launches, find the distance, in miles, between the current location and
the first hospital. Then find it for the second hospital, and so on. When you have the
distances, determine the minimum distance and display the address (and/or a map)
to that location.

From this description, can you determine the procedures this app needs?

Often, the verbs in such a description hint at the procedures you’ll need. Repetition
in your description, as indicated with the “so on,” is another clue. In this case, finding
the distance between two points and determining the minimum of some distances are
two necessary procedures.

Let’s think about the design of the distanceBetweenPoints procedure. When de-
signing a procedure, you need to determine its inputs and outputs: the parameters
the caller will send to the procedure for it to do its job, and the result value the proce-
dure will send back to the caller. In this case, the caller needs to send the latitude and
longitude of both points to the procedure shown in Figure 21-17. The procedure’s
job is to return the distance, in miles.

302  Chapter 21:  Defining Procedures: Reusing Blocks

Caller distanceBetweenPoints

point1Lat
point1Long

Distance

point2Lat
point2Long

Figure 21-17. The caller sends four input parameters and receives a distance

Figure 21-18 shows the procedure we encountered at the start of the chapter, using
a formula for approximating the mileage between two GPS coordinates.

Figure 21-18. distanceBetweenPoints procedure

Figure 21-19 shows blocks that make two calls to the procedure, each of which finds
the distance from the current location to a particular hospital.

For the first call, the actual parameters for point1 are the GPS coordinates for St.
Mary’s Hospital, while point2 uses the current readings from the LocationSensor.
The result value is placed in the variable distanceStMarys. The second call is similar,
but instead uses the data for CPMC Hospital for point1.

The app goes on to compare the two distances returned to determine which hospital
is closest. But if there were more hospitals involved, you’d really need to compare
a list of distances to find the minimum. From what you’ve learned, can you create
a procedure called findMinimum that accepts a list of numbers as a parameter and
returns the index of the minimum?

Summary  303 

Figure 21-19. Two calls to the distanceBetweenPoints procedure

Summary
Programming languages like App Inventor provide a base set of built-in functional-
ity. Procedures let app inventors extend that language with new abstractions. App
Inventor doesn’t provide a block for displaying a list, so you build one. Need a block
for computing the distance between GPS coordinates? You can create your own.

The ability to define higher-level procedure blocks is the key to engineering large,
maintainable software and solving complex problems without being constantly
overwhelmed by all of the details. Procedures let you encapsulate code blocks and
give those blocks a name. While you program the procedure, you focus solely on the
details of those blocks. But in programming the rest of the app, you now have an
abstraction—a name—that you can refer to at a high level.

CHAPTER 22

Working with Databases

Facebook has a database of every
member’s account information, friends
list, and posts. Amazon has a database of
just about everything you can buy.
Google has a database of information
about every page in the World Wide Web.
Though not to this scale, almost every
nontrivial app you can create will have a
database component.

In most programming environments,
building an app that communicates with
a database is an advanced programming

technique: you have to set up a server with database software like Oracle or MySQL and
then write code that interfaces with that database. In universities, such programming is
generally not taught until an upper-level software engineering or database course.

App Inventor does the heavy lifting for you when it comes to databases (and lots of other
useful things!). The language provides components that reduce database communica-
tion to simple store and get operations. You can create apps that store data directly on
the Android device, and with some setup, you can create apps that share data with other
devices and people by storing it in a centralized web database.

The data in variables and component properties is short-term: if the user enters some
information in a form and then closes the app, that information will be gone when
the app is reopened. To store information persistently, you must store it in a data-
base. The information in databases is said to be persistent because even when you
close the app and reopen it, the data is still available.

As an example, consider Chapter 4’s No Texting While Driving app, which sends an
autoresponse to texts that come in when the user is busy. This app lets the user enter
a custom message to be sent in response to incoming texts. If the user changes the
custom message to “I’m sleeping; stop bugging me” and then closes the app, the
message should still be “I’m sleeping; stop bugging me” when the app is reopened.
Thus, the custom message must be stored in a database, and every time the app is
opened, that message must be retrieved from the database back into the app.

306  Chapter 22:  Working with Databases

Storing Persistent Data in TinyDB
App Inventor provides two components to facilitate database activity: TinyDB and
TinyWebDB. TinyDB is used to store persistent data directly on the Android device;
this is useful for highly personalized apps where the user won’t need to share her
data with another device or person, as in No Texting While Driving. TinyWebDB, on
the other hand, is used to store data in a web database that can be shared among
devices. Being able to access data from a web database is essential for multiuser
games and apps where users can enter and share information (like the MakeQuiz
app in Chapter 10).

The database components are similar, but TinyDB is a bit simpler, so we’ll explore it
first. With TinyDB, you don’t need to set up a database at all; the data is stored in a
database directly on the device and associated with your app.

You transfer data to long-term memory with the TinyDB.StoreValue block, as shown
in Figure 22-1, which comes from the No Texting While Driving app.

Figure 22-1. The TinyDB.StoreValue block stores data to the device’s long-term memory

A tag-value scheme is used for database storage. In Figure 22-1, the data is tagged
with the text “responseMessage.” The value is some text the user has entered for the
new custom response—say, “I’m sleeping; stop bugging me.”

The tag gives the data you’re storing in the database a name —a way to reference
the information—while the value is the data itself. You can think of the tag as a key
that you’ll use later when you want to retrieve the data from the database.

Likewise, you can think of an App Inventor TinyDB database as a table of tag-value
pairs. After the TinyDB1.StoreValue in Figure 22-1 is executed, the device’s database
will have the value listed in Table 22-1.

Table 22-1. The value stored in the databases

Tag Value

responseMessage I’m sleeping; stop bugging me

Retrieving Data from TinyDB  307 

An app might store many tag-value pairs for the various data items you wish to be
persistent. The tag is always text, while the value can be either a single piece of infor-
mation (a text or number) or a list. Each tag has only one value; every time you store
to a tag, it overwrites the existing value.

Retrieving Data from TinyDB
You retrieve data from the database with the TinyDB.GetValue block. When you call
GetValue, you request particular data by providing a tag. For the No Texting While
Driving app, you can request the custom response using the same tag as we used
in the StoreValue, “responseMessage.” The call to GetValue returns the data, so you
must plug it into a variable.

Often, you’ll retrieve data from the database when the app opens. App Inventor
provides a special event handler, Screen.Initialize, which is triggered when the
app starts up. The general pattern is to call GetValue, put the returned data into a
variable, and then check to see if the database indeed returned some information.
This check is important, because generally the first time you run the app, there is no
database data yet (e.g., the first time No Texting While Driving runs, the user hasn’t
yet entered a custom response).

The blocks in Figure 22-2, for the Screen.Initialize of No Texting While Driving, are
indicative of how many apps will load data on initialization.

The blocks put the data returned from GetValue into the variable response and then
check if response has a length greater than 0. If it does, then the database did return
a nonempty custom response, and it should be put in the ResponseLabel. If the
length of the value returned is 0, it means no data with a tag of “responseMessage”
has been stored, so no action is necessary.

Figure 22-2. A template for loading database data when the app launches

308  Chapter 22:  Working with Databases

Storing and Sharing Data with TinyWebDB
The TinyDB component stores data in a database located directly on the Android
device. This is appropriate for personal-use apps that don’t need to share data
among users. For instance, many people might download the No Texting While
Driving app, but there’s no need for the various people using the app to share their
custom responses with others.

Of course, many apps do share data: think of Facebook, Twitter, and popular mul-
tiuser games such as Words with Friends. For such data-sharing apps, the database
must live on the Web, not the device. The MakeQuiz/TakeQuiz apps from Chapter
10 provide another example: a person on one phone creates a quiz and stores it in a
web database so that a person on another phone can load the quiz and take it.

TinyWebDB is the web counterpart to TinyDB. It allows you to write apps that store
data on the Web, using a StoreValue/GetValue protocol similar to that of TinyDB.

By default, the TinyWebDB component stores data using a web database set up by
the App Inventor team and accessible at http://appinvtinywebdb.appspot.com. That
website contains a database and “serves” (responds to) web requests for storing and
retrieving data. The site also provides a human-readable web interface that a data-
base administrator (you) can use to examine the data stored there.

To explore the web database, open a browser to http://appinvtinywebdb.appspot.com
and check out some of the tag-value data stored there.

This default database is for development only; it is limited in size and accessible to all
App Inventor programmers. Because any App Inventor app can store data there, you
have no assurance that another app won’t overwrite your data!

If you’re just exploring App Inventor or in early the stages of a project, the default
web database is fine. But if you’re creating an app for real deployment, at some point
you’ll need to set up your own web database. Since we’re just exploring right now,
we’ll use the default web database. Later in the chapter, you’ll learn how to create
your own web database and configure TinyWebDB to use it instead.

In this section, we’ll build a voting app (depicted in
Figure 22-3) to illustrate how TinyWebDB works. The app
will have the following features:

• Users are prompted to enter their email address each
time the app loads. That account name will be used
to tag the user’s vote in the database.

• Users can submit a new vote at any time. In this case,
their old vote will be overwritten.

• Users can view the votes from everyone in the group.

Figure 22-3. A Voting app that
stores votes to TinyWebDB

Storing Data with TinyWebDB  309 

• For the sake of simplicity, the issue being voted on is determined outside the app,
such as in a classroom setting in which the teacher announces the issue and asks
everyone to vote electronically. (Note that this example could be extended to
allow users to prompt votes by posting issues to vote on from within the app.)

Storing Data with TinyWebDB
The TinyWebDB.StoreValue block works the same as TinyDB.StoreValue, only the
data is stored on the Web. For our voting sample, assume the user can enter a vote
in a text box named VoteTextBox and click a button named VoteButton to submit
the vote. To store the vote to the web database so others can see it, we’ll code the
VoteButton.Click event handler like the example in Figure 22-4.

Figure 22-4. Using the VoteButton.Click event handler to store a vote to the database

The tag used to identify the data is the user’s email, which has previously been stored
in the variable myEmail (we’ll see this later). The value is whatever the user entered in
VoteTextBox. So, if the user email was wolber@gmail.com and his vote was “Obama,”
the entry would be stored in the database as shown in Table 22-2.

Table 22-2. The tag and value for the vote are recorded in the database

tag value

wolber@gmail.com Obama

The TinyWebDB.StoreValue block sends the tag-value pair over the Web to the data-
base server at http://appinvtinywebdb.appspot.com. Because it’s the default service,
it shows lots of data from various apps, so you may or may not see your app’s data in
the initial window that appears. If you don’t see your data, there is a /getValue link
that allows you to search for data with a particular tag.

Test your app. As you program with TinyWebDB, use the web
interface of the database server to test that data is being stored as
you expect.

310  Chapter 22:  Working with Databases

Requesting and Processing Data with TinyWebDB
Retrieving data with TinyWebDB is more complicated than with TinyDB. With TinyDB,
the GetValue operation immediately returns a value because your app is commu-
nicating with a database directly on the Android device. With TinyWebDB, the app is
requesting data over the Web, so Android requires a two-step scheme for handling it.

With TinyWebDB, you request the data with GetValue and then process it later in a
TinyWebDB.GotValue event handler. TinyWebDB.GetValue should really be called
“RequestValue” because it just makes the request to the web database and doesn’t
actually “get” a value from it right away. To see this more clearly, check out the dif-
ference between the TinyDB.GetValue block (Figure 22-5) and the TinyWebDB.
GetValue block (Figure 22-6).

Figure 22-5. The TinyDB.GetValue block

Figure 22-6. The TinyWebDB.GetValue block

The TinyDB.GetValue block returns a value right away, and thus a plug appears on
its left side so that the returned value can be placed into a variable or property. The
TinyWebDB.GetValue block does not return a value immediately, so there is no plug
on its left side.

Instead, when the web database fulfills the request and the data arrives back at the
device, a TinyWebDB.GotValue event is triggered. So you’ll call TinyWebDB.GetValue
in one place of your app, and then you’ll program the TinyWebDB.GotValue event
handler to specify how to handle the data when it actually arrives. An event handler
like TinyWebDB.GotValue is sometimes called a callback procedure, because some
external entity (the web database) is in effect calling your app back after processing
your request. It’s like ordering at a busy coffee shop: you place your order and then
wait for the barista to call your name to actually go pick up your drink. In the mean-
time, she’s been taking orders from everyone else in line too (and those people are
all waiting for their names to be called as well).

GetValue-GotValue in Action  311 

GetValue-GotValue in Action
For our sample app, we need to store and retrieve a list of the voters who have the
app, as the ultimate goal is to show the votes of all users.

The simplest scheme for retrieving list data is to request the data when the app
launches, in the Screen.Initialize event, as shown in Figure 22-7. (In this example,
we’ll just call the database with the tag for “voterlist.”)

Figure 22-7. Requesting data in the Screen1.Initialize event

When the list of voters arrives from the web database, the TinyWebDB1.GotValue
event handler will be triggered. Figure 22-8 shows some blocks for processing the
returned list.

Figure 22-8. Using the GotValue event handler to process the returned list

The valueFromWebDB argument of GotValue holds the data returned from the data-
base request. Event arguments like valueFromWebDB have meaning only within the
event handler that invokes them (they are considered local to the event handler), so
you can’t reference them in other event handlers.

It may seem a bit counterintuitive, but once you get used to the idea of arguments
holding local data, you’re probably already thinking about something that can
handle data more globally (anywhere in an app): variables. Given that, it makes sense
that GotValue’s key job is to transfer the data returned in valueFromWebDB into a
variable. In this case, the data is transferred into the variable voterList, which you’ll
use in another event handler.

312  Chapter 22:  Working with Databases

The if block in the event handler is also often used in conjunction with GotValue, the
reason being that the database returns an empty text (“”) in valueFromWebDB if there
is no data for the requested tag—most commonly, when it’s the first time the app
has been used. By asking if the valueFromWebDB is a list, you’re making sure there is
some data actually returned. If the valueFromWebDB is the empty text (the if test is
false), you don’t put it into voterList.

Note that get data, check data, set data (into a variable) is the same pattern you used
in the preceding TinyDB example, but here you are expecting a list, so you use a
slightly different test.

A More Complex GetValue/GotValue Example
The blocks in Figure 22-8 are a good model for retrieving data in a fairly simplistic
app. In our voting example, however, we need more complicated logic. Specifically:

• The app should prompt the user to enter his email address when the program
starts. We can use a Notifier component for this, which pops up a window. (You
can find the Notifier in the “Other stuff” palette in the Designer.) When the user
enters his email, we’ll store it in a variable.

• Only after determining the user’s email should we call GetValue to retrieve the
voter list. Can you figure out why?

Figure 22-9 shows the blocks for this more complicated scheme for requesting the
database data.

Figure 22-9. In this more complex scheme, GetValue is called after getting the user’s email

On startup (Screen1.Initialize), a Notifier component prompts the user to enter
his email. When the user enters it (Notifier.AfterTextInput), his entry is put into a
variable and label, and then GetValue is called to get the list of voters. Note that
GetValue isn’t called directly in Screen.Initialize because we need the user’s email
to be set first.

So, with these blocks, when the app initializes, it prompts the user for his email
and then calls GetValue with a tag of “voterlist.” When the list arrives from the Web,
GotValue will be triggered. Here’s what we want to happen:

GetValue-GotValue in Action  313 

• GotValue should check if the data that arrives is nonempty (someone has used
the app and initiated the voter list). If there is data (a voter list), we should check
if our particular user’s email is already in the voter list. If it’s not, it should be
added to the list, and the updated list should be stored back to the database.

• If there isn’t yet a voter list in the database, we should create one with the user’s
email as the only item.

Figure 22-10 shows the blocks for this behavior.

The blocks first ask if a nonempty voter list came back from the database by calling
is a list?. If so, the data is put into the variable voterList. Remember, voterList will
have emails for everyone who has used this app. But we don’t know if this particular
user is in the list yet, so we have to check. If the user is not yet in the list, he is added
with add item to list, and the updated list is stored to the web database.

Figure 22-10. Using the GotValue blocks to process the data returned from the database and perform
different actions based on what is returned

314  Chapter 22:  Working with Databases

The “else-do” part of the ifelse block is invoked if a list wasn’t returned from the web
database; this happens if nobody has used the app yet. In this case, a new voterList
is created with the current user’s email as the first item. This one-item voter list is then
stored to the web database (with the hope that others will join as well!).

Requesting Data with Various Tags
The voting app thus far manages a list of an app’s users. Each person can see the
emails of all the other users, but we haven’t yet created blocks for retrieving and
displaying each user’s vote.

Recall that the VoteButton allowed the user to submit a vote with a tag-value pair
of the form “email: vote.” If two people had used the app and voted, the pertinent
database entries would look something like Table 22-3.

Table 22-3. The tag-value pairs stored in the database

tag value

voterlist [wolber@gmail.com, joe@gmail.com]

wolber@gmail.com Obama

joe@gmail.com McCain

When the user clicks on the ViewVotes button, the app should retrieve all votes from
the database and display them. Supposing the voter list has already been retrieved
into the variable voterList, we can use a foreach to request the vote of each person
in the list, as shown in Figure 22-11.

Figure 22-11. Using a foreach block to request the vote of each person in the list

Setting Up a Web Database  315 

Here we initialize a variable, currentVotesList, to an empty list, as our goal is to
add the up-to-date votes from the database into this list. We then use foreach to call
TinyWebDB1.GetValue for every email in the list, sending the email (voterEmail)
as the tag in the request. Note that the votes won’t actually be added to current-
VotesList until they arrive via a series of GotValue events.

Processing Multiple Tags in TinyWebDB.GotValue
Now that we want to display the votes in our app, things get a bit more complicated
yet again. With the requests from ViewVotesButton, TinyWebDB.GotValue will now
be returning data related to all the email tags, as well as the “voterlist” tag used to
retrieve the list of user emails. When your app requests more than one item from the
database with different tags, you need to code TinyWebDB.GotValue to handle all
possible requests. (You might think that you could try to code multiple GotValue event
handlers, one for each database request—can you figure out why this won’t work?)

To handle this complexity, the GotValue event handler has a tagFromWebDB argument
that tells you which request has just arrived. In this case, if the tag is “voterlist,” we
should continue to process the request as we did previously. If the tag is something
else, we can assume it’s the email of someone in the user list, stemming from the re-
quests triggered in the ViewVotesButton.Click event handler. When those requests
come in, we want to add the data—the voter and vote—to the current VotesList
so we can display it to the user.

Figure 22-12 shows the entire TinyWebDB.GotValue event handler.

Setting Up a Web Database
As we mentioned earlier in the chapter, the default web database at http://appinvtiny
webdb.appspot.com is intended for prototyping and testing purposes only. Before you
deploy an app with real users, you need to create a database specifically for your app.

You can create a web database using the instructions at http://appinventorapi.com/
program-an-api-python/. This site was set up by one of the authors (Wolber) and
contains sample code and instructions for setting up App Inventor web databases
and APIs. The instructions point you to some code that you can download and use
with only a minor modification to a configuration file. The code you’ll download is
the same as that used for the default web database set up by App Inventor. It runs
on Google’s App Engine, a cloud computing service that will host your web database
on Google’s servers for free. By following the instructions, you can have your own pri-
vate web database (that is compliant with App Inventor’s protocols) up and running
within minutes and begin creating web-enabled mobile apps that use it.

316  Chapter 22:  Working with Databases

Figure 22-12. The TinyWebDB.GotValue event handler

Once you create and deploy your own custom web database (at which point,
you’ll know the URL for it), you can create apps that use it. For an app to use your
custom database, you’ll need to change a property in the TinyWebDB component,
ServiceURL, so the component knows to store and retrieve data from your new
custom database. Figure 22-13 illustrates how to do this.

Summary  317 

In this example, the ServiceURL is set to http://usfweb
service.appspot.com, a web database that one of the
authors set up for his students’ apps (the end of
“appspot.com” is cut off in the text box in Figure 22-13).
Once the ServiceURL is set, all TinyWebDB.
StoreValue and TinyWebDB.GetValue calls will be
sent to the specified URL.

Summary
App Inventor makes it easy to store data persistently through its TinyDB and
TinyWebDB components. Data is always stored as a tag-value pair, with the tag
identifying the data for later retrieval. Use TinyDB when it is appropriate to store
data directly on the device. When data needs to be shared across phones (e.g., for a
multiplayer game or a voting app), you’ll need to use TinyWebDB instead. TinyWebDB
is more complicated because you need to set up a callback procedure (the GotValue
event handler), as well as a web database service.

Once you get the hang of working with databases—especially the key get data, check
data, set data pattern—you’ll be building more complex apps in no time!

Figure 22-13. Changing the
ServiceURL property to the URL
of your custom database

CHAPTER 23

Reading and Responding to Sensors

Point your phone at the sky, and Google Sky Map
tells you which stars you’re looking at. Tilt your
phone, and you can control the game you’re
playing. Take your phone on your daily walk, and a
breadcrumb app records your route. All of these
apps are possible because the mobile devices we
carry have high-tech sensors for detecting our
location, orientation, and acceleration.

In this chapter, you’ll revisit the App Inventor com-
ponents LocationSensor, OrientationSensor,
and AccelerometerSensor. Along the way, you’ll
learn about the global positioning system (GPS);
orientation measures like pitch, roll, and yaw; and
some math for processing accelerometer readings.

Creating Location-Aware Apps
Until the popularization of the smartphone,
computing was on desktop lockdown. Yes, laptops are mobile, but not in the same
sense as the tiny devices we now carry around in our pockets. Computing has left the
lab and the office, and is now taking place out in the world.

One significant effect of carrying our computing with us is a new, very interesting
piece of data for every app: a current location. Knowing where people are as they
move about the world has far-reaching implications and the potential to help us
greatly in our lives. It also has the potential to invade our privacy and be a detriment
to humanity.

The “Android, Where’s My Car?” app (Chapter 7) is an example of a location-aware app
that provides a personal benefit. It lets you remember a previous location so you can
get back to it at a later time. That app is private—your location information is stored
only in your phone’s database.

320  Chapter 23:  Reading and Responding to Sensors

The same idea can be applied to groups. For instance, a group of hikers might want
to keep track of one another’s whereabouts in the wilderness, or a group of busi-
ness associates might want to find one another at a large conference. Such apps are
starting to appear in the marketplace, with two of the most popular being Google’s
Latitude (www.google.com/latitude), and Facebook’s Places (www.facebook.com/
places). Due to the public’s privacy concerns, these apps faced criticism on their
launch.

Another type of location-aware app uses augmented-reality tools. These apps use
your location and the phone’s orientation to provide overlay information that aug-
ments the natural setting. So you might point a phone at a building and see its price
on the real-estate market, or you might walk near an exotic plant in a botanical gar-
den and have an app tell you its species. Early players in this genre include Wikitude,
Layar, and Google Sky Map.

Wikitude even allows users to add data to the mobile cloud through its website,
http://wikitude.me. At the site, you pull up a map to geotag the information you post.
Later, when you or someone else uses Wikitude’s mobile app at that location, your
information appears.

GPS
To create a location-aware app, you first need to understand how the global posi-
tioning system (GPS) works. GPS data comes from a satellite system maintained by
the US government. As long as you have an unobstructed sight line to at least three
satellites in the system, your phone can get a reading. A GPS reading consists of your
latitude, longitude, and altitude. Latitude is how far north or south you are of the
equator, with values for north being positive and south being negative. The range
is –90 to 90. Figure 23-1 shows a Google map of a spot near Quito, Ecuador. The lati-
tude shown on the map is –0.01—just barely south of the equator!

Figure 23-1. Quito, Ecuador, is on the equator

Creating Location-Aware Apps  321 

Longitude is how far east or west you are of the Prime Meridian; east coordinates
have positive values and west coordinates are negative. The most well-known place
it runs through is Greenwich, a town near London that is the home of the Royal
Observatory. The map in Figure 23-2 shows Greenwich and its longitude of 0.0.

Figure 23-2. The Royal Observatory in Greenwich shoots a beam of light along the Prime Meridian

Longitude values range from –180 to 180. Figure 23-3 shows a spot in Russia, very
close to Alaska, that has a 180.0 longitude. You might say that a location like this is
halfway around the world from Greenwich (0.0 longitude).

Figure 23-3. A point near the Russian–Alaskan border has longitude 180

Sensing Location with App Inventor
App Inventor provides the LocationSensor component for accessing GPS informa-
tion. The component has properties for Latitude, Longitude, and Altitude. It also
communicates with Google Maps, so you can get a reading for your current street
address.

322  Chapter 23:  Reading and Responding to Sensors

LocationSensor.LocationChanged, pictured in Figure 23-4, is the key event handler
for the LocationSensor.

Figure 23-4. The LocationSensor1.LocationChanged event handler

This event is triggered the first time the sensor gets a reading and each subsequent
time the phone is moved enough so that new data is read. There’s often a delay of
quite a few seconds before an app’s first reading, and sometimes the device can’t get
a reading at all. For instance, if you’re indoors and not connected to WiFi, the device
might not get a reading. Your phone also has settings that allow you to turn GPS
reading off to save battery life; this is another potential reason the component can’t
get a reading. For these reasons, you shouldn’t assume that the LocationSensor
properties have a valid setting until the LocationSensor.LocationChanged event
occurs.

One way to deal with the unknowns in location sensing is to create a variable
lastKnownLocation, initialize it to “unknown,”and then have the LocationSensor
.LocationChanged event handler change the value of that variable, as shown in
Figure 23-5.

Figure 23-5. The value of the lastKnownLocation variable changes whenever the location changes

Creating Location-Aware Apps  323 

By programming the LocationSensor.LocationChanged event handler in this way,
you can always display the current location or record it in a database, with “unknown”
appearing until the first reading. This strategy is used in No Texting While Driving
(Chapter 4); that app autoresponds to SMS texts and includes either “unknown” or
the last reading taken in the response.

You can also ask explicitly whether the sensor has a reading using the
LocationSensor.HasLongitudeLatitude block pictured in Figure 23-6.

Figure 23-6. Testing whether the sensor has a reading with the HasLongitudeLatitude block

Checking Boundaries
One common use of the LocationChanged event is to check whether the device is
within a boundary, or a set area. For example, consider the code in Figure 23-7, which
vibrates the phone each time a new reading shows that a person has moved farther
than 0.1 longitude from the Prime Meridian.

Figure 23-7. If a reading isn’t close to the Prime Meridian, the phone vibrates

Such boundary checking has numerous applications; for example, warning parolees
if they’re nearing a legally specified distance from their home, or alerting parents
or teachers if a child leaves the playground area. If you’d like to see a slightly more
complex example, see Chapter 18’s discussion of conditional blocks.

324  Chapter 23:  Reading and Responding to Sensors

Location Information Providers: GPS, WiFi, and Cell ID
An Android device can determine its own location in a number of ways. The most
accurate method—within a few meters—is through the satellites that make up the
GPS maintained by the US government. You won’t get a reading, however, if you’re
inside and there are skyscrapers or other objects in the way; you need a clear path to
at least three satellites in the system.

If GPS isn’t available or the user has disabled it, the device can obtain its position
through a wireless network. You have to be near a WiFi router, of course, and the
position reading you’ll get is the latitude/longitude of that WiFi station.

A third way a device can determine positioning is through Cell ID. Cell ID provides a
location for the phone based on the strength of signals from nearby cell phone tow-
ers. It is generally not very accurate unless you have numerous cell towers near you.
However, it does use the least amount of battery power compared to GPS or WiFi
connectivity.

Using the Orientation Sensor
The OrientationSensor is used for game-like apps in which the user controls the ac-
tion by tilting the device. It can also be used as a compass to find out which direction
(north/south, east/west) the phone is pointing.

The OrientationSensor has five properties, all of which are unfamiliar to most
people other than aeronautical engineers:

Roll (Left–Right)
Roll is 0 degrees when the device is level, increases to 90 degrees as the device
is tilted up onto its left side, and decreases to −90 degrees when the device is
tilted up onto its right side.

Pitch (Up–Back)
Pitch is 0 degrees when the device is level, increases to 90 degrees as the device
is tilted so its top is pointing down, and increases further to 180 degrees as it is
turned over. Similarly, as the device is tilted so its bottom points down, Pitch
decreases to −90 degrees and then down to −180 degrees as it is turned all the
way over.

Yaw (Compass)
Yaw is 0 degrees when the top of the device is pointing north, 90 degrees when it
is pointing east, 180 degrees when it is pointing south, and 270 degrees when it
is pointing west.

Magnitude (Speed of a rolling ball)
Magnitude returns a number between 0 and 1 that indicates how much the de-
vice is tilted. Its value indicates the force exerted by a ball rolling on the surface
of the device.

Using the Orientation Sensor  325 

Angle (Angle of a rolling ball)
Angle returns the direction in which the device is tiled. That is, it tells the direc-
tion of the force that would be exerted by a ball rolling on the surface of the
device.

The OrientationSensor also provides the OrientationChanged event, which is trig-
gered every time the orientation changes. To explore these properties further, write
an app that illustrates how the properties change as the user tilts the device. Just add
five heading labels, and five other labels to show the current values of the properties
in the preceding list. Then add the blocks shown in Figure 23-8.

Figure 23-8. Blocks to display the OrientationSensor data

Using the Roll Parameter
Now let’s try to move an image left or right on
the screen based on the user tilting the device,
like you might do in a shooting or driving game.
Drag out a Canvas and set the Width to “Fill
parent” and the Height to 200 pixels. Then add
an ImageSprite or Ball within the Canvas, and
add a Label named RollLabel under it to
display a property value, as shown in Figure
23-9.

Figure 23-9. A user interface for
exploring how “roll” can be used to
move an image

326  Chapter 23:  Reading and Responding to Sensors

The OrientationSensor’s Roll property will tell you if the phone is tilted left or right
(i.e., if you hold the phone upright and tilt it slightly to the left, you’ll get a positive
reading for the roll; if you tilt it slightly right, you’ll get a negative reading). Therefore,
you can let the user move an object with an event handler like the one shown in
Figure 23-10.

Figure 23-10. Responding to changes in the Roll property with the OrientationChanged event

The blocks multiply the roll by –1, as tilting left gives a positive roll and should move
the object left (thereby making the x coordinate smaller). For a review of how the
coordinate system works in animated apps, see Chapter 17.

Note that this app works only when the device is in portrait mode (upright), not in
landscape mode. As is, if you tilt the phone too far, the screen will autorotate into
landscape mode and the image will stay marooned on the left side of the screen.
The reason is that if the device is on its side, it is tilted left and thus will always get a
positive reading for the roll. A positive roll reading, as shown in the blocks in Figure
23-10, will always make the x coordinate smaller.

If App Inventor provided the capability, you could either (1) lock the phone so it
didn’t autorotate for this app, or (2) find out the phone’s mode and modify your
formula for moving the object based on that setting. Such capabilities will certainly
be added to the system, but you should instruct your users on how the app works
currently.

Moving Any Direction with Heading and Magnitude
The example in the previous section moves the image left or right. If you want to
allow for movement in any direction, you can use the Angle and Magnitude proper-
ties of the OrientationSensor. These are the properties used to move the ladybug
in the game described in Chapter 5.

In Figure 23-11, you can see the blocks for a test app that lets the user tilt the device
to move a character in any direction (you need two labels and an image sprite for this
example).

Using the Orientation Sensor  327 

Figure 23-11. Moving a character using angle and magnitude

Try this one out. The Magnitude property, a value between 0 and 1, denotes how
much the device is tilted. In this test app, the image moves faster as the magnitude
gets bigger.

Using the Phone As a Compass
Compass apps and apps like Google Sky Map need to know the phone’s orientation
in the world, east/west and north/south. Sky Map uses the information to overlay
information about the constellations at which the phone is pointing.

The Yaw reading is useful for this type of orientation. Yaw is always between 0 and
360 degrees, with 0 being north; 90, east; 180, south; and 270, west. So a reading of
45 means the phone is pointing northeast, 135 means southeast, 225 means south-
west, and 315 means northwest.

The blocks in Figure 23-12 are for a simple compass that displays in text which direc-
tion the phone is pointing (e.g., Northwest).

As you may have noticed, the blocks show only one of four possibilities: Northwest,
Northeast, Southwest, and Southeast. As a challenge, see if you can modify it to show
just a single direction (North, South, East, or West) if the reading specifies that you
are pointing within a few degrees of it.

328  Chapter 23:  Reading and Responding to Sensors

Figure 23-12. Programming a simple compass

Using the Accelerometer
Acceleration is the rate of change of velocity over time. If you press your foot to the
gas pedal of your car, the car accelerates—its velocity increases at a particular rate.

An accelerometer—like the one in your Android device—measures acceleration, but
its frame of reference is not the device at rest, but rather the device in free fall: if you
drop the phone, it will register an acceleration reading of 0. Simply put, the readings
take gravity into account.

If you want to know more about the physics of the matter, you’ll have to consult your
Einstein-related books. But in this section, we’ll explore the accelerometer enough to
get you started. We’ll even examine an app that could help save lives!

Responding to the Device Shaking
If you’ve been going through the chapters and completed the app in Chapter 1
(HelloPurr), you’ve already used the AccelerometerSensor. In that app, you used the
Accelerometer.Shaking event to make the kitty meow when the phone was shaken,
as shown in Figure 23-13.

Using the Accelerometer  329 

Figure 23-13. Playing a sound when the phone is shaken

Using the AccelerometerSensor’s Readings
Like the other sensors, the accelerometer has an event for when the readings
change, AccelerometerSensor.AccelerationChanged. That event has three argu-
ments corresponding to the acceleration in three dimensions:

xAccel
Positive when the device is tilted to the right (that is, its left side is raised), and
negative when the device is tilted to the left (its right size is raised).

yAccel
Positive when the device’s bottom is raised, and negative when its top is raised.

zAccel
Positive when the device display is facing up, and negative when the display is
facing down.

Detecting Free Fall
We know that if all the acceleration readings are near 0, the device is free-falling to
the ground. With this in mind, we can mimic a free-fall event by checking the read-
ings in the AccelerometerSensor.AccelerationChanged event. Such blocks, with
lots of testing, could be used to detect when an elderly person has fallen and auto-
matically send an SMS message out in response.

Figure 23-14 shows the blocks for an app that simply reports that a free fall has occurred
(and lets the user click a Reset button to check again).

330  Chapter 23:  Reading and Responding to Sensors

Figure 23-14. Reporting when a free fall has occurred

Each time the sensor gets a reading, the blocks check the x, y, and z dimensions to
see if they’re near 0 (if their absolute value is less than 1). If all three are near 0, the
app changes a status label to denote that the phone is in free fall. When the user
clicks the ResetButton, the status label is reset to its original state (“Device has NOT
been in free fall”).

If you’d like to try this app, you can download it at http://examples.oreilly.com/
0636920016632.

Detecting Acceleration Using Calibrated Values
The AcclerometerSensor’s readings are calibrated to the free-fall state. If you want
to instead measure the acceleration relative to its value when the phone is lying inert
on a table, you need to calibrate the readings to that standard. To calibrate means to
check, adjust, or determine by comparison with a standard; in this case, the standard
you want is the readings when the device is lying flat.

To do this, you need the user to help you by laying the device flat on a table and
then clicking a Calibrate button. When the user clicks the button, the app re-
cords the readings for the flat surface. Those readings can then be used later, in
AccelerationChanged events, to offset the new readings and tell you if the device is
moved rapidly in some dimension.

Using the Accelerometer  331 

Figure 23-15 shows a sample app that lets the user
calibrate the readings and then detects acceleration.

You can download and install this app from http://
examples.oreilly.com/0636920016632/. Run it, set
the phone on a table, and click Calibrate. The read-
ings will appear in the “Readings when flat” area.
If you raise the phone slowly, the readings in the
“Significant accelerations” area won’t change. But
if you raise the phone rapidly, the “No” reading for
Z will change to “Yes,” as shown in Figure 23-15.
Similarly, if you move the phone rapidly across the
table, you’ll get a significant acceleration for X or Y.
Figure 23-16 shows the blocks for getting the initial
calibration.

Figure 23-16. Getting the initial calibration

These blocks take the readings and place them in three labels: XCalibLabel,
YCalibLabel, and ZCalibLabel. The blocks also initialize the labels that will be used
to report accelerations later, after this calibration step.

The accelerometer should get a reading of zAccel around 9.8 when the phone is flat,
and xAccel and yAccel readings of around 0. But the calibration step tells us exactly
how the accelerometer is working. Once the calibration readings are set, your app

Figure 23-15. Calibrating the
acceleration readings

332  Chapter 23:  Reading and Responding to Sensors

can detect changes in the x, y, or z dimensions by measuring new readings offset
from the old (similar to the boundary-checking app covered in Chapter 18). Figure
23-17 provides the blocks for detecting acceleration using the calibrated readings.

Figure 23-17. Detecting acceleration using the calibrated readings

These blocks will be triggered if the device is moved. They check the new acceler-
ometer readings to see if they are significantly different (within 3) of those taken
when the phone was lying flat. Suppose that our calibration step had put a 9.0 in
ZCalibText. If you slowly lift the phone, the new readings will remain close to 9, and
no change will be reported. But if you rapidly lift the phone, the reading will become
significantly higher, and the blocks will report a change.

Summary
Sensors are of great interest in mobile apps because they allow your users to truly
interact with their environments. By taking computing mobile, you are opening up
(almost literally) a whole world of opportunities in user experiences and app devel-
opment. However, you’ll need to think carefully about how, where, and when you
use sensors in your apps. Many people have privacy concerns, and they might not
use your app if they’re worried about what you’re doing with their sensor data. But
with all the options in games, social networking, travel, and more, the possibilities for
positive implementations are nearly endless.

CHAPTER 24

Communicating with Web APIs

Mobile technology and the ubiquitous nature
of the Web have changed the world we live in.
You can now sit in the park and do your
banking, search Amazon.com to find reviews
of the book you’re reading, and check Twitter
to see what people in every other park in the
world are thinking about. Mobile phones have
moved well past just calling and texting—
now you have instant access to the world’s
data, too.

You can use your phone’s browser to reach the
Web, but often the small screen and limited
speed of a mobile device can make this prob-
lematic. Custom apps, specially designed to
pull in small chunks of particularly suitable in-
formation from the Web, can provide a more attractive alternative to the mobile browser.

In this chapter, we’ll take a broader look at apps that source information from the Web.
You’ll start by creating an app that asks a website to generate a bar chart (image) of a
game player’s scores for display. Then we’ll discuss how TinyWebDB can be used to access
any type of data (not just images) from the Web, and we’ll provide a sample that accesses
stock data from Yahoo! Finance. Finally, we’ll discuss how you can create your own web
information sources that can be used by App Inventor apps.

Creativity is about remixing the world, combining (mashing) old ideas and content in
interesting new ways. Eminem popularized the music mashup when he set his Slim
Shady vocal over AC/DC and Vanilla Ice tracks. This kind of “sampling” is now com-
mon, and numerous artists—including Girl Talk and Negativland—focus primarily on
creating new tracks from mashing old content.

334  Chapter 24:  Communicating with Web APIs

The web and mobile world are no different: websites and apps remix content from
various data sources, and most sites are now designed with such interoperability
in mind. An illustrative example of a web mashup is Housing Maps (http://www.
housingmaps.com), pictured in Figure 24-1, which takes apartment rental information
from Craigslist (http://www.craigslist.org) and mashes it with the Google Maps API.

Figure 24-1. Housing Maps mashes information from Craigslist and Google Maps

Mashups like Housing Maps are possible because services like Google Maps provide
both a website and a corresponding web service API. We humans visit http://maps
.google.com/ in a browser, but apps like Housing Maps communicate machine to
machine with the Google Maps API. Mashups process the data, combine it with data
from other sites (e.g., Craigslist), and then present it in new and interesting ways.

Just about every popular website now provides this alternative, machine-to-machine
access. The program providing the data is called a web service, and the protocol for
how a client app should communicate with the service is called an application pro-
grammer interface, or API. In practice, the term API is used to refer to the web service
as well.

The Amazon Web Service (AWS) was one of the first web services, as Amazon realized
that opening its data for use by third-party entities would eventually lead to more
books being sold. When Facebook launched its API in 2007, many people raised their
eyebrows. Facebook’s data isn’t book advertisements, so why should it let other apps
“steal” that data and potentially draw many users away from the Facebook site (and
its advertisements!). But its openness led Facebook toward becoming a platform in-
stead of just a site—meaning that other programs, like FarmVille, could build on and
tap into Facebook’s functionality—and no one can argue with its success today. By
the time Twitter launched in 2009, API access was an expectation, not a novelty, and
Twitter acted accordingly. Now, as shown in Figure 24-2, most websites offer both an
API and a human interface.

Talking to Web APIs That Generate Images  335 

Website

Client appClient app

Web UI

API

Figure 24-2. Most websites provide both a human interface and an API for client apps

So the Web is one thing to us average humans—a collection of sites to visit. To
programmers, it is the world’s largest and most diverse database of information.
Machine-to-machine communication is now poised to outpace human–machine
communication on the Web!

Talking to Web APIs That Generate Images
As we saw in Chapter 13 (“Amazon at the Bookstore”), most APIs accept requests
in the form of a URL and return data (typically in standard formats like XML, or
Extensible Markup Language; and JSON, JavaScript Object Notation). For these APIs,
you use the TinyWebDB component to communicate, a topic we’ll discuss in greater
detail later in the chapter.

Some APIs, however, don’t return data; they return a picture. In this section, we’ll dis-
cuss how you can communicate with these image-generating APIs in order to extend
App Inventor’s user interface capabilities.

The Google Chart API is such a service. Your app can send it some data within a URL,
and it will send back a chart that you can display in your app. The service creates
many types of charts, including bar charts, pie charts, maps, and Venn diagrams. The
Chart API is a great example of an interoperable web service whose purpose is to
enhance the capabilities of other sites. Since App Inventor doesn’t provide much in
terms of visualization components, the ability to leverage a service like the Chart API
is crucial.

336  Chapter 24:  Communicating with Web APIs

The first thing to do is to understand the format of the URL you should send to the
API. If you go to the Google Chart API site (http://code.google.com/apis/chart), you
will see the overview shown in Figure 24-3.

Figure 24-3. The Google Chart API generates numerous types of charts

The site includes complete documentation and a wizard to interactively create charts
and explore how to build the URLs. The wizard is especially helpful, because you can
use a form to specify the kind of chart you want and then examine the URL that the
wizard generates to reverse-engineer what you want to send it for your specific data.

Go ahead and play around with the website and the wizard and build some charts,
and then take a look at the details of the URLs used to build them. For example, if
you enter the following URL in a browser:

http://chart.apis.google.com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=
A2C180&chtt=Vertical+bar+chart&chd=t:10,50,60,80,40,60,30

you’ll get the chart shown in Figure 24-4.

Talking to Web APIs That Generate Images  337 

Figure 24-4. Google’s Chart API generates this chart from the URL

To understand the rather complicated-looking URL specified previously, you need to
understand how URLs work. In your browsing experience, you’ve probably noticed
URLs with question marks (?) and ampersands (&). The ? character specifies that the
first parameter of the URL request is coming. The & character then separates each
succeeding parameter. Each parameter has a name, an equals sign, and a value. So
the sample URL is calling the Chart API (http://chart.apis.google.com/chart) with the
parameters listed in Table 24-1.

Table 24-1. The Chart API utilizes a URL with these parameters

Parameter Value Meaning

cht bvg The chart type is bar, vertical, grouped.

chxt y Show the numbers on the y-axis.

chbh a Width/spacing is automatic.

chs 300x225 The size of the chart in pixels.

chco A2C180 The bar colors in hexadecimal notation.

chd t:10,50,60,80,40,60,30 The data of the chart, with basic text format (t).

chtt Vertical+bar+chart The chart title; a + character indicates a space.

By modifying the parameters, you can generate various graphs. For more information
on the types of graphs you can create, check out the API documentation at http://
code.google.com/apis/chart/index.html.

Setting the Image.Picture Property to a Chart API
Now you know how to type the sample Chart API URL into a web browser to see
the chart that is generated. To get a chart to appear in an app, you’ll need to set the
Picture property of an Image component to that same URL. To explore this, do the
following:

338  Chapter 24:  Communicating with Web APIs

1. Create a new app with a screen title of “Sample Chart App”.

2. Add an Image component with a Width of “Fill parent” and Height of 300.

3. Set the Image.Picture property to the sample URL (http://chart.apis.google.
com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=A2C180&chtt=Vert
ical+bar+chart&chd=t:10,50,60,80,40,60,30). You can’t set the property in the
Component Designer, as it only allows you to upload a file. But you can set it in
the Blocks Editor, as shown in Figure 24-5, so add a Screen.Initialize event han-
dler and set the Image.Picture property there (note that you can’t copy and
paste on some machines, so you’ll have to type out the full URL).

Figure 24-5. When the app starts, it sets the picture to a chart returned from the Chart API URL

You should see the image in Figure 24-6 on your
phone or emulator.

Building a Chart API URL Dynamically
The preceding example shows how you can get a
generated chart in your app, but it uses a URL with
fixed data (10,50,60,80,40,60,30). Generally, you’ll
show dynamic data in your chart—that is, data stored
in your variables. For example, in a game app, you
might show the user’s previous scores, which are
stored in a variable Scores.

To create such a dynamic chart, you must build the
URL for the Chart API and load your variable data into
it. In the sample URL, the data for the chart is fixed
and specified in the parameter chd (chd stands for
chart data):
chd=t:10,50,60,80,40,60,30

To build your scores chart dynamically, you’ll start with the fixed part, chd=t:, and
then step through the Scores list, concatenating each score to the text (along with a
comma). Figure 24-7 shows a complete solution.

Figure 24-6. The chart in an app

Talking to Web APIs That Generate Images  339 

Figure 24-7. Dynamically building a URL to send to the Chart API

340  Chapter 24:  Communicating with Web APIs

Let’s examine the blocks more closely, because there’s a lot going on in here, much of
which we’ve covered in previous chapters. To understand such code, it’s important to
envision some real data. So let’s assume the user has played three games in this app
and that the variable Scores has three items: 11, 22, and 15.

The blocks in Figure 24-8 define a variable chdParam to store the part of the URL that
will contain the chd data. The first row of blocks initializes the text of the chdParam
from the list of Scores.

Figure 24-8. Beginning the chd parameter with “chd=t:” and the first score

After these blocks are performed, chdParam will contain chd=t:11, as 11 is the first
value of the Scores list.

The next set of blocks, shown in Figure 24-9, adds the rest of the scores to the
chdParam.

Figure 24-9. Adding the successive scores to the chdParam variable

We use a while block in this example instead of a foreach because foreach only allows
you to do the same thing to each item. Here, we want to insert commas before the
second item and any items that come after it (but not the first). With while, we can

Talking to Web Data APIs   341 

put the first item in (Figure 24-8) and then loop starting from the second item, always
inserting a comma before the item (make sure not to put a space afterward). For
more information on while and foreach, see Chapter 20.

An index is used to keep track of where we are in the Scores list. On each iteration,
make text adds a comma and the next item in Scores. After these blocks are per-
formed, the chdParam will contain chd=t:11,22,15. We have built the chd parameter
dynamically! (And we’ve also built it so that if more scores are added beyond these
first three, it will still work.)

The blocks’ last job is to concatenate the chd parameter with the rest of the Chart API
URL, as shown in Figure 24-10.

Figure 24-10. Setting the picture to the full URL, including the chd parameter just built

The blocks set the ScoreChartImage.Picture property to this full URL: http://chart
.apis.google.com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=A2C180&chtt=
Game+Scores&chd=t:11,22,15. Your users will see something similar to what is shown
in Figure 24-11.

You could add such a display to any game or app by
adding blocks similar to this example. You could also
talk to other APIs that generate images and bring
those into your app as well. The key is that App
Inventor provides a useful connection to the Web
through the Image component.

Talking to Web Data APIs
The Google Chart API is a web API that responds to
requests by returning a picture. More commonly, APIs
will return data that an app can process and use how-
ever it wants. The “Amazon at the Bookstore” app in
Chapter 13, for instance, returns data in the form of a
list of books, with each book including a title, current
lowest price, and ISBN.

Figure 24-11. The dynamically
generated chart

342  Chapter 24:  Communicating with Web APIs

To talk to an API from an App Inventor app, you don’t need to build a URL, as we
did with the Chart API example. Instead, you query the API much like you would a
web database (Chapter 22): just send your request as the tag to the TinyWebDB.
GetValue block. The TinyWebDB component takes care of actually generating the
URL that you send to the API.

TinyWebDB does not provide access to all APIs, even those that return a standard
data format such as RSS. TinyWebDB can only talk to web services for which an App
Inventor “wrapper” service, with a particular protocol, has been created. Fortunately,
a number of these services have been created already, and more will soon follow. You
can find some of these at http://appinventorapi.com.

Exploring the Web Interface of an API
In this section, you’ll learn how to use TinyWebDB to bring in stock price data from
the App Inventor–compliant API at http://yahoostocks.appspot.com. If you go to the
site, you’ll see the web (human) interface of the service pictured in Figure 24-12.

Figure 24-12. The web interface of the App Inventor–compliant Yahoo! Finance API

Try entering “IBM” or some other stock symbol into the Tag input box. The web page
returns current stock information as a list, with each item representing a different
piece of information, as described in the numerical listing further down the page.

Note that this web interface isn’t meant as a new or interesting way to find stock
information; its sole purpose is to allow programmers to explore the API for commu-
nicating with the underlying machine-to-machine web service.

Talking to Web Data APIs   343 

Accessing the API Through TinyWebDB
The first step in creating an app that talks to the preceding web service is to drag a
TinyWebDB component into the Component Designer. There is only one property
associated with TinyWebDB, its ServiceURL, shown in Figure 24-13. By default, it is
set to a default web database, http://appinvtinywebdb.appspot.com. Since we want to
instead access the Yahoo! Stocks API, set this property to http://yahoostocks.appspot
.com, the same URL you entered at the browser address bar earlier to see the web
page interface.

The next step is to make a TinyWebDB.GetValue call to
request data from the site. You might do this in response to
the user entering a stock symbol and clicking a Submit
button in your app’s UI, or you might do it in the Screen
.Initialize event to bring in information about a particular
stock right when the app is opened. In any case, when you
call GetValue, you should set the tag to a stock symbol, as
illustrated in Figure 24-14, just as you did at the http://
yahoostocks.appspot.com website.

Figure 24-14. Requesting stock information

As we covered in Chapter 10’s MakeQuiz app and in Chapter 22’s discussion of data-
bases, the TinyWebDB communication is asynchronous: your app requests the data
with TinyWebDB.GetValue and then goes about its business. You must provide a
separate event handler, TinyWebDB.GotValue, to program the steps the app should
take when the data actually comes back from the web service. From our examination
of the human interface of http://yahoostocks.appspot.com, we learned that the data
returned from GetValue is a list, with particular list items representing different data
about the stock (e.g., item 2 is the latest price).

A client app can use some or all of the data the service provides. For example, if you
just wanted to display the current stock price and its change since the day’s opening,
you might configure blocks as shown in Figure 24-15.

Figure 24-13. The
ServiceURL is set to http://
yahoostocks.appspot.com

344  Chapter 24:  Communicating with Web APIs

Figure 24-15. Using the GotValue event to process the data that arrives from Yahoo!

If you check the API specification at http://yahoostocks.appspot.com, you’ll see that
the second item in the returned list is indeed the current price, and the fifth item is
the change since stocks began trading that day. This app simply extracts those items
from what is returned by the API, and shows them in the labels PriceLabel and
ChangeLabel. Figure 24-16 provides a snapshot of the app in action.

Figure 24-16. The Stocks App in action

Creating Your Own App Inventor–Compliant APIs  345 

Creating Your Own App Inventor–Compliant APIs
TinyWebDB is the bridge from an App Inventor app to the Web. It lets App Inventor
programmers talk to web services with the simple tag-value protocol inherent in
the GetValue function. You send a particular tag as the parameter, and a list or text
object is returned as the value. In this way, the App Inventor programmer is shielded
from the difficult programming required to parse (understand and extract data from)
standard data formats like XML or JSON.

The tradeoff is that App Inventor apps can talk only to web services that follow
TinyWebDB’s expected protocol—it expects data to be returned in a very specific
way, and the API has to provide its data accordingly. App Inventor doesn’t have a
component for accessing an arbitrary web service that returns standard data formats
such as XML or JSON. If there isn’t an App Inventor–compliant API already available,
someone with the ability to write a web program must create it.

In the past, building APIs was difficult because you not only needed to understand
the programming and web protocols, but you also needed to set up a server to host
your web service, and a database to store the data. Now it’s much easier, as you
can leverage cloud-computing tools like Google’s App Engine and Amazon’s Elastic
Compute Cloud to immediately deploy the service you create. These platforms will
not only host your web service, but they’ll also let thousands of users access it before
charging you a single dime. As you can imagine, these sites are a great boon to
innovation.

Customizing Template Code
Writing your own API may seem daunting, but the good news is that you don’t need
to start from scratch. You can leverage some provided template code that makes
it especially easy to create App Inventor–compliant APIs. The code is written in the
Python programming language and uses Google’s App Engine. The template pro-
vides boilerplate code for getting the data into the form that App Inventor needs,
and a function, get_value, that you can customize.

You can download the template code and instructions for deploying it on Google’s
App Engine servers at http://appinventorapi.com/using-tinywebdb-to-talk-to-an-api/.
You might notice that the link takes you to the same appinventorapi .com site that was
used in Chapter 21 to create a custom web database. Building an API is similar, only
instead of just storing and retrieving data, you’ll call some other service to access the
data you need.

To create your own web API, you’ll download the template, modify a few key places
in the code, and then upload it to App Engine. Within minutes, you will have your
own API that can be called using TinyWebDB in an App Inventor app.

346  Chapter 24:  Communicating with Web APIs

Here’s the particular code from the template that you’ll need to customize (don’t
worry about the text that comes after the # symbol; like the comments in App
Inventor, it just describes what the code following it is doing):

def get_value(self, tag):
 #For this simple example, we just return hello:tag, where tag is sent in by client
 value="hello:"+tag
 value = "\""+value+"\"" # add quotes if the value is has multiple words
 if self.request.get('fmt') == "html":
 WriteToWeb(self,tag,value)
 else:
 WriteToPhone(self,tag,value)

This code is for a function (same as a procedure in App Inventor) called get_value,
and it’s indeed the code that is invoked when your app calls an API with the
TinyWebDB.GetValue function. tag is a parameter of the function and corresponds
to the tag you send in the GetValue call.

The bolded code is the part you’ll change. By default, it simply takes the tag sent
in with the request and sends back “hello tag.” (In other words, if you call this code
with the tag “joe,” it returns “hello joe”). It does this by setting the variable value,
which is then sent to the function WriteToWeb if the request came from the Web, or
WriteToPhone if the request came from a phone.

Note. Even if you’ve never looked at Python or other programming
code, you may find the sample above somewhat readable from your
experience with App Inventor. The “def get_value...” line defines a
procedure, the “value=...” lines are setting the variable “value” to
something, and the “if.. “ statements should look familiar. The fun-
damental concepts are the same, its just text instead of blocks.

To customize the template, you replace the bold code with any computation you
want, as long as that code places something in the variable value. Often, your API
will make a call to another API (this is called “wrapping” a call—more specifically, your
get_value function will make the call to some other API).

Many APIs are complicated, with hundreds of functions and complex user authoriza-
tion schemes. Others, however, are quite simple, and you can even find sample code
for accessing them on the Web, as you’ll see in the next section.

Creating Your Own App Inventor–Compliant APIs  347 

Wrapping the Yahoo! Finance API
The Yahoo! Stocks API for App Inventor used in this chapter was created by modify-
ing the template code above with code found through a simple web search. As the
goal was wrapping the Yahoo! Stocks API for use by App Inventor, the developer
(Wolber) did a web search for “Python Yahoo Stocks API”. From the site http://www
.gummy-stuff.org/Yahoo-data.htm, he found that a URL in the form:

http://download.finance.yahoo.com/d/quotes.csv?f=sl1d1t1c1ohgv&e=.cs v&s=IBM

would return a text file with a single comma-separated string of data. The preceding
URL returns this text string:

"IBM",140.85,"10/15/2010","3:00pm",-0.65,142.10,142.10,140.60,4974553

He then found some Python code for accessing the Yahoo! Stocks API at http://www
.goldb.org/ystockquote.html. With some quick cutting and pasting and a bit of edit-
ing, the App Inventor wrapper API was created by modifying the template in the
following manner:

def get_value(self, tag):
 # Need to generate a string or list and send it to WriteToPhone/ WriteToWeb
 # Multi-word strings should have quotes in front and back
 # e.g.,
 # value = "\""+value+"\""
 # call the Yahoo Finance API and get a handle to the file that is returned
 quoteFile=urllib.urlopen("http://download.finance.yahoo.com/d/quotes.csv?f=
 sl1d1t1c1ohgv&e=.csv&s="+tag)
 line = quoteFile.readline() # there's only one line
 splitlist = line.split(",") # split the data into a list
 # the data has quotes around the items, so eliminate them
 i=0
 while i<len(splitlist):
 item=splitlist[i]
 splitlist[i]=item.strip('"') # remove " around strings
 i=i+1
 value=splitlist
 if self.request.get('fmt') == "html":
 WriteToWeb(self,tag,value)
 else:
 WriteToPhone(self,tag,value)

The bolded code calls the Yahoo! API within the urllib.urlopen function call (this
is one way to call APIs from the Python language). The URL has a parameter, f, that
specifies the type of stock data you want (this parameter is something like the cryptic
parameters required by the Google Chart API). The data returned from Yahoo! is then
put into the variable line. The rest of the code splits up the items into a list, removes
the quotation marks around each item, and sends the result to the requester (either
the web interface or an App Inventor app).

348  Chapter 24:  Communicating with Web APIs

Summary
Most websites and many mobile apps are not standalone entities; they rely on the in-
teroperability of other sites to do their jobs. With App Inventor, you can build games,
quizzes, and other standalone apps, but soon enough, you’ll encounter issues related
to web access. Can I write an app that tells me when the next bus will arrive at my
usual stop? Can I write an app that texts a special subset of my Facebook friends?
Can I write an app that sends tweets? App Inventor provides two hooks to the Web:
(1) you can set the Image.Picture property to a URL to bring in a (generated) image,
and (2) you can use TinyWebDB to access data in a specially designed web API.

App Inventor does not provide arbitrary access to APIs. Instead, the system relies
on programmers to create “wrapper” APIs that follow a particular protocol. Once
created, these APIs are available to App Inventor app programmers using the same
TinyWebDB.GetValue scheme they use to access databases. Actually writing APIs is
certainly a bigger hurdle than writing apps in App Inventor, but if you’re interested
in learning how, be sure to check out some Python books and courses (O’Reilly has a
few of those!), and you’ll be on your way.

Index

A
abstraction, procedural, 47
AccelerometerSensor component

acceleration, detecting using calibrated
values, 330–332

device shaking, responding to, 328
free fall, detecting, 329
readings, using, 329

ActivityStarter component
in Android, Where’s My Car? app, 102, 106
in Paris Map Tour app, 90

actual parameters, 298
altitude. See GPS (global positioning system)

information
Amazon at the Bookstore app

APIs
customizing, 215
understanding, 204–206

behaviors, designing
display, improving, 213
scanning a book, 211
searching by ISBN, 210
searching by keyword, 209

components, designing, 207
variations on, 216

Amazon Elastic Compute Cloud, 345
Amazon Web Service (AWS), 334
Android emulator, 2
Android Market, 53
Android platform, xv
Android, Where’s My Car? app

behaviors, adding to the components
current location, displaying, 103
current location, recording, 104
remembered location, displaying

directions to, 106

remembered location, retrieving when
the app launches, 109

remembered location, storing
persistently, 108

complete app, 111
components, designing, 100–102

Angle property of the OrientationSensor, 325,
326

animated apps. See also ImageSprite
components

animation functions, high-level
CollidingWith and

NoLongerCollidingWith events, 255
EdgeReached event, 254
overview, 253

animation in Ladybug Chase app, 71–74
canvas components, adding, 249
canvas coordinate system, 250
interactive animation, 256
objects, animating with timer events

movement, creating, 252
speed, 253

sprite animation, specifying without a
clock, 257

answers, checking, 126–129
APIs (application programming interfaces).

See also web APIs
App Inventor-compliant APIs, creating

template code, customizing, 345
Yahoo! Finance API, wrapping, 347

chart APIs
building a chart API URL dynamically,

338–341
Google API for, 335–337
setting the Image.Picture property, 337

customizing, 215
understanding, 204–206

350  Index

blocks. See also events; See also repeating
blocks

activating and deactivating, 239
block names, specific

ActivityStarter.StartActivity, 93
add items to list, 151, 174, 178, 274
and block, 263
BluetoothClient1.AddressesAndNames,

192
BluetoothClient1.Connect, 193
BluetoothClient1.Disconnect, 195
Button1.Click, 9, 134
call blocks, 295, 300
call Sound1.Play, 10
call Sound1.Vibrate, 11
Camera.TakePicture, 31
Canva.DrawCircle, 250
Canvas1.Touched, 45
Canvas.DrawLine, 250
Clock1.Now, 140
Clock1.Timer, 45, 78
Clock.Timer, 50
color, 75
component ImageSprite1, 256
def currentQuestionIndex, 121
def dotSize, 33
def var, 174
def variable, 33, 36, 74, 121, 140, 243,

268
displayQAs, 155
DrawingCanvas.BackgroundImage, 31
DrawingCanvas.Clear, 31
DrawingCanvas.DrawCircle, 32
foreach, 130, 154, 156, 176, 226, 282,

293, 314, 340
global dotSize, 33
global phoneNumbers, 283
global score, 245
global value, 36
if and ifelse, 226, 260
ifelse, 46, 126, 174, 176, 256, 314
length, 75
ListPicker.Selection, 93
LocationSensor.HasLongitudeLatitude,

323
make a list, 140, 164, 174, 244, 268,

273, 278
make text, 62, 106, 154, 180, 210, 341
name, 75
NextButton.Click, 119
Notifier1.ShowAlert, 194
number 1, 238, 245

app architecture
apps as recipes vs. apps as event handlers,

221
behaviors, understanding, 221
components, understanding, 220
event handlers

apps as sets of, 221–223
asking questions with, 225
remembering things with, 227
repeating blocks with, 226
talking to the web with, 227

event types
categories of events, 223
external events, 225
initialization events, 224
timer events, 224
user-initiated events, 224

App Inventor
description of, xv
ease of use, xvii
environment of, 2
intuitive basis of, 223
overview of, xvi–xviii
types of apps you can build, xviii
who can build apps, xix

app memory. See memory, programming
apps, debugging. See debugging apps
Arrangements, using, 22
augmented reality tools, 320
autoresponse, programming, 55

B
Background Images, 22
Ball components, 251
barcode scanning, 211
behaviors

adding to components
Amazon at the Bookstore app, 208–214
Android, Where’s My Car? app, 102
Broadcast Hub app, 172–174
Hello Purr app, 8–11
Ladybug Chase app, 72
MakeQuiz and TakeQuiz app, 150–161
MoleMash app, 41–48
No Texting While Driving app, 54–65
NXT Remote Control app, 192–200
PaintPot app, 25–34
Paris Map Tour app, 91–93
Presidents Quiz app, 116

understanding, in the App Inventor
environment, 221

Index  351 

Blocks Editor, 2, 3, 8, 219
call blocks

calling a function, description of, 222
calling a procedure, 295
the program counter, 296

for choosing a list item, 96
description of, 223
high-level block, definition of, 253
for lists, overview of, 267
lists of blocks to perform specific

functions
Bluetooth, using to connect with robot,

194
broadcast list, loading back into the

app on launching, 183
checking if the sender is in the group,

176
checking text messages and adding

senders to broadcast lists, 174
correct answers to questions,

indicating, 126
current location, record and display,

104, 107, 108
custom reponse, displaying, 57
database data, retrieving using Screen.

Initialize blocks, 160
index values for the end of a list,

checking, 120
initial question upon app startup,

loading, 118
invite people to the group via text,

adding functionality, 173
ListPicker, adding to app, 192
location information, displaying in

autoresponse, 65
location reading and display in app’s

UI, 103
log of broadcast messages, building,

180
NxtUltrasonicSensor, using, 200
phone numbers, cleaning up display

of, 178
question and answer lists, defining, 150
question-answer pairs, displaying on

separate lines, 154
retrieving data when app opens, 59
RightWrongLabel, clearing, 128
robots, controlling, 197
robots, disconnecting from, 195
store lists with TinyDB, 182
storing data to the database, 158
storing data with TinyDB, 58
TinyWebDB.GotValue, 161
user entries, recording, 151

NxtUltrasonicSensor1.BelowRange,
200

PlayNote, 135
position in list, 276
procedureWithResult, 299
random fraction, 78, 83
random integer, 44, 261
RedButton.Click, 30
remove from list, 186
remove list item, 166, 275
repeat blocks, 282
ResetButton.Click, 47
RestartButton.Click, 85
Screen1.Initialize, 44, 224
select list item, 117, 269, 283
set DrawingCanvas.BackgroundImage

to, 31
set DrawingCanvas.PaintColor to, 30
set global score to, 244
set global to, 244
set global variable to, 36
set HitsCountLabel.Text to, 46
set QuestionsAnswersLabel.Text to,

156
set Texting1.Message to, 283
set variable to, 247
Sound1.Play, 134
Sound1.Source, 140
Sound1.Vibrate, 48, 86, 141
StoreValue, 158
text.contains, 130
Texting1.MessageReceived, 173
Texting1.SendMessage, 55
Texting.MessageReceived, 55
Text-to-speech blocks, 62
TinyDB.GetValue, 307
TinyDB.StoreValue, 306
TinyWebDB1.StoreValue, 158
TinyWebDB.GetValue, 160, 209, 342
TinyWebDB.GotValue, 160, 209
TinyWebDB.StoreValue, 309
to displayList, 294
to procedure, 43, 75, 135, 294
to procedure with result, 294
value currentX and value currentY, 30
value messageText, 62
value number, 62
value prevX and value prevY, 30
value x and value y, 27
while, 282, 286, 340
while do, 226
while.foreach, 282
WipeButton.Click, 31

352  Index

Clock timers
and interactive animation, 256
Sprite animation without, 257
in Xylophone app, 143

cloud computing, 14, 345
coding

commenting your code, 232
defensive programming, 81
designing before coding, 231
foreach blocks and, 284
refactoring, 76
understanding and tracing, 233–236

collisions
CollidingWith events, 255
detecting, in Ladybug Chase app, 80

colors
color buttons, creating, 21
downloading more colors, for App

Inventor, 251
paint colors, traversing a list of, 270–273

comment boxes
adding, 56
commenting your code, importance of,

232
compass, using the phone as, 327
complex apps, creating in App Inventor, xix
complex conditions, programming, 263–266
components. See also specific types of

components
Component Designer

Components list, 5
description of, 3
Media area, 5
overview of, 2, 219
Palette, description of, 4
Properties, 5
Viewer, description of, 4

designing
Amazon at the Bookstore app, 207
Android, Where’s My Car? app, 100
Ladybug Chase app, 70
MakeQuiz and TakeQuiz app, 148–150
MoleMash app, 38–41
No Text While Driving app, 53
NXT Remote Control app, 189–192
Paint Pot app, 20–23
Paris Map Tour app, 90
Xylophone app, 132

understanding, 220
computing formulas using “while”, 288
conditional blocks, 260

location sensor, setting up, 64
Math drawer of Built-In blocks, 246
repeating with event handlers, 226
reusing among apps, 301
testing with Do It, 238

Bluetooth connection, 193–195
book apps. See Amazon at the Bookstore app
Boolean expressions, 260
Boolean values, understanding, 242
boundaries, checking, 323
Broadcast Hub app

behaviors, adding to the components, 172
broadcasted texts, logging, 180–182
BroadcastList

adding someone to, 174
display, cleaning up, 178–180
loading from a database, 183
storing in a database, 181

complete app, 184
components, designing, 171
messages, broadcasting, 175–177
variations on, 186

Button components
and the camera component, 23
color buttons, creating, 21
connecting sounds to, 134–136
how to add, 6

button event handlers, 30

C
calibrated values, detecting acceleration with,

330–332
call blocks

calling a function, description of, 222
calling a procedure, 295
the program counter, 296

Camera component
and Button components, 23
letting the user take a picture, 31

Canvas components
adding, 22, 249
dot size, changing, 32–34
DrawingCanvas component, 25

Canvas coordinate system, 250
Cell ID, as location information provider, 324
chart APIs

building a chart API URL dynamically,
338–341

Google API for, 335–337
setting the Image.Picture property, 337

Index  353 

decision making, programming apps for
complex conditions, 263–266
conditions within conditions, 262
either/or decisions, 261
testing conditions with if and ifelse blocks,

260
defensive programming, 81
designing software. See software engineering

principles
device shaking, responding to, 328
Do It

incremental development with, 239
testing blocks with, 238

downloading your app, 14
download site for this book, 7, 8
drag events, adding, 28–30
drawer for components, 9
DrawingCanvas component, 25
dynamic data vs. static data, 148
dynamic lists, creating

adding items to, 273
defining, 273
displaying a list, 274
removing items from lists, 275

E
educational apps, overview of, xvii, xviii
either/or decisions, programming, 261
engineering principles for software

development. See software
engineering principles

event handlers
apps as sets of, 221
asking questions with, 225
button event handlers, adding, 30
description of, 9
remembering things with, 227
repeating blocks with, understanding, 226
talking to the web with, 227
types of

Ball1.EdgeReached, 258
BarcodeScanner.AfterScan, 212
BigButton.Click, 34
Button.Click, 256
Camera1.AfterPicture, 31
Camera1.TakePicture, 31
Clock.Timer, 257
DrawingCanvas.Touched, 25–27, 33
GotValue, 161
LocationSensor.LocationChanged, 64,

322
NextButton.Click, 123, 127, 237, 238

conditional branches, understanding, 225,
259

conditions, complex, 263–266
conditions within conditions, programming,

262
control characters, 285
creativity, mashups and, 333–335

D
databases

overview, 305
persistent data

storage for, 58
storing in TinyDB, 306
understanding, 227, 305

requesting data with various tags, 314
TinyDB

component, 58
loading a BroadcastList from, 183
retrieving data from, 307
storing a BroadcastList in, 181
storing data in, 306
storing persistent data in, 306
storing remembered location in, 108

TinyWebDB
accessing an API through, 343
and APIs, understanding, 204–206
exploring the interface of, 342
GetValue-GotValue, examples of, 311,

312
loading data from, 160–162
multiple tags, processing, 315
requesting and processing data with,

310
storing and sharing data with, 308, 309
storing questions and answers in,

157–159
talking to web data APIs, 341

web databases, setting up, 315
data, programming lists of

input forms and dynamic lists, creating,
273–278

list items, selecting, 269
lists of lists, 277–279
lists, using an index to traverse, 269–272
list variables, creating, 268

debugging apps
activating and deactivating blocks, 239
testing individual blocks with Do It, 238
using Do It for incremental development,

239
variables, watching, 237–239

354  Index

F
Facebook, 334
foreach blocks

in Broadcast Hub app, 175
displaying a list and, 284–286
looping and, 283
and maintainable code, 284

formal parameters, 298
formulas, using “while” to compute, 288
free fall of phone, detecting, 329
FrontLineSMS, 169
functions. See also procedures, defining

defined, 291
types of

BarcodeScanner.DoScan, 212
get_value function, 346
LocationSensor1.CurrentAddress, 64
random fraction, 247
random integer, 85
TextToSpeech1.Speak, 62
TinyDB.GetValue, 59, 109

understanding, as response to events, 222

G
games, xviii. See also specific games; See

also animated apps
geotagging, 320
GetValue block, 307, 310, 311–314
global variables, 34, 150
Google Chart API, 335
Google Maps, 93–96, 321, 334
Google’s App Engine, 345
GPS (global positioning system) information

adding location information to apps, 63
creating apps to access, overview of, xviii
and other location information providers,

324
understanding, 320

GUI (graphical user interface) builders, xv

H
Heading property

of ImageSprite and Ball components, 257
in Ladybug Chase app, 72
moving any direction with, 326

HelloPurr app
App Inventor environment, introduction

to, 2
behaviors, adding

adding a purr, 11
making the kitty meow, 9
shaking the phone, 13

RememberButton.Click, 108
Screen1.Initialize, 59, 117
Screen.Initialize, 160, 235, 307
SmallButton.Click, 34
SubmitButton.Click, 152, 156
TakePictureButton.Click, 31
Texting1.MessageReceived, 65, 174,

179
Texting.MessageReceived, 62
TinyWebDB.GotValue, 165
VoteButton.Click, 309

events
categories of

external events, 225
initialization events, 224
timer events, 224
user-initiated events, 224

overview of, in App Inventor, xviii
specific events

AccelerometerSensor.
AccelerationChanged, 329

Accelerometer.Shaking, 328
AfterPicking, 275
Ball.EdgeReached, 254
BeforePicking, 275
Button.Click, 25
Camera.AfterPicture event, 31
Clock1.Timer, 256
Clock.Timer, 252
CollidedWith, 255
ConnectListPicker.AfterPicking, 194
ConnectListPicker.BeforePicking, 192
DrawingCanvas.Dragged, 25–29
DrawingCanvas.DrawCircle, 25
DrawingCanvas.DrawLine, 25–29
EdgeReached, 254
ListPicker.AfterPicking, 93
LocationChanged, 64, 103, 323
LocationSensor.LocationChanged, 103,

264
MessageReceived, 180
NoLongerCollidingWith, 255
OrientationChanged, 325
Screen1.Initialize, 92, 183
Screen.Initialize, 109, 311, 343
SubmitResponseButton.Click, 57

expressions
building complex expressions, 246
incrementing a variable, 245
setting variables to, 245

external events, description of, 225

Index  355 

L
Label components, 3, 4, 40
Ladybug Chase app

adding an aphid
adding an ImageSprite, 78–82
controlling the aphid, 78
detecting a Ladybug-aphid collision,

80
having the Ladybug eat the aphid, 79
return of the aphid, 81

animating the Ladybug
adding the behavior, 72
adding the components, 71–74

components, designing, 70
displaying the energy level

adding a component, 74–77
creating a variable energy, 74
drawing the energy bars, 74–76
starvation, 76

Frog, adding
having the Frog chase the Ladybug, 83
having the Frog eat the Ladybug, 84
return of the Ladybug, 85

restart button, adding, 82
sound effects, adding, 86
variations on, 86

latitude. See GPS (global positioning system)
information

learning apps, creating in App Inventor, xvii
LEGO MINDSTORMS NXT robots. See NXT

Remote Control app
ListPicker component, 92
lists

broadcast lists, 171–181
dynamic lists, creating

adding items to, 273
defining, 273
displaying a list, 274
removing items from lists, 275

ListPicker component, 93–97, 275
lists of data, programming

input forms and dynamic lists, creating,
273–278

list items, selecting, 269
lists of lists, 277–279
list variables, creating, 268
using an index to traverse lists,

269–272
list variables, creating, 268
question and answer lists, 116–122, 151
selecting items in, 269
using foreach to display, 284

components, designing
buttons, adding, 6
labels, making, 5
meow sound, adding, 8

downloading, packaging the app for, 14
sharing the app, 15
variations on, 15

high-level animation functions, 255–257
high-level block, definition of, 253
high-tech apps, overview of creating in App

Inventor, xix
Horizontal Arrangement components, 22

I
Image components

connecting to the Web via, 341
in Paris Map Tour app, 90
in Presidents Quiz app, 115, 124
setting the Picture property of, 337

images generated by web APIs, talking to,
335–337

ImageSprite components
Ladybug Chase app, 78–82
MoleMash app, 38
properties of, 71
understanding, 251

images, switching, 124
incrementing a variable, 245
index to list variables, 267, 269
index variable, defining, 117
initial appearance of components,

understanding, 221
initialization events, description of, 224
input forms, creating

adding items to, 273
displaying a list, 274
dynamic lists, defining, 273
removing items from a list, 275

interactive animation, 256
interactive development environments (IDEs),

defined, 236
Internet, talking to with event handlers, 227
invoking a function, 222

K
keeping score, 45
keywords, searching by, 209

356  Index

in Paris Map Tour app, 90, 91, 93–98
mashups

creativity and, 333–335
definition of, 227

memory, programming
named memory slots, 241
properties, 242
variables

complex expressions, building, 246
defining, 243
displaying, 247
incrementing, 245
setting and getting, 244
setting to an expression, 245

messages, broadcasting, 175. See also Texting
component

Minimum Interval property, 15
MoleMash app

complete app, 49
components, adding behaviors to

calling MoveMole every second, 45
calling MoveMole when app starts, 44
creating MoveMole, 42–44
moving the mole, 42
when the mole is touched, 48

components, designing
“action” components, placing, 39
component list, 39
Label components, placing, 40

keeping score, 45
procedural abstraction, 47
resetting the score, 47
variations on, 49

movement, creating, 252

N
named memory slots, 241
name list, 298
names in App Inventor, 20
nesting, definition of, 262
non-visible components, understanding, 220
notes, recording and playing back, 138–144
No Texting While Driving app

complete app, 66
components, adding behaviors to

blocks, how they work, 56
custom response, entering, 57
custom response, retrieving when the

app opens, 59–61
custom response, storing in a database,

58
incoming texts, speaking aloud, 61

using “while” to synchronously process
two lists, 287

location-aware apps, creating in App
Inventor, xviii, 319–324

LocationSensor
boundaries, checking, 323
GPS, how it works, 320
location information, adding and sending,

63–66
location information providers, GPS, WiFi,

and Cell ID, 324
LocationSensor component, 63, 103, 220,

263
recording and remembering the current

location, 104–110
sensing location with App Inventor,

321–323
longitude. See GPS (global positioning

system) information
looping. See also repeating blocks

defined, 281
foreach blocks and, 283

M
Magnitude property of the

OrientationSensor, 324, 326
MakeQuiz and TakeQuiz app

behaviors, adding to the components
blanking out the question and answer,

152
database, loading data from, 160–162
question-answer pairs, displaying on

multiple lines, 153–156
questions and answers, storing in a

database, 157–159
user’s entries, recording, 151

complete app, 163
components, designing, 149–151
TakeQuiz

complete app, 166
components, designing and reusing,

164
loading the Quiz from the database,

164
variations on, 166

maps. See also Google Maps
in Android, Where’s My Car? app, 102, 105,

106–108
Google Sky Map, 319, 327
in Housing Maps app, 334
location-aware apps, creating, 319–324

Index  357 

description of, 19
variations on, 35

Palette, description of, 4
parameters, adding to your procedure,

296–298
Paris Map Tour app

ActivityStarter, setting the properties of,
90

components, adding behaviors to
creating a list of destinations, 91
letting users choose a destination, 92
opening maps with a search, 93

designing components for, 90
variations on, 98
virtual tours, setting up

DataURLs for specific maps, finding, 94
defining the dataURLs list, 95
ListPicker.AfterPicking behavior,

modifying, 96–98
persistent data, 227. See also databases
personalized apps, creating in App Inventor,

xvii
phones

shaking, 328
using as compass, 327
vibration, adding, 11

pictures
camera component, adding, 31
switching images, 124

Pitch property of the OrientationSensor, 324
pixels, understanding, 250
play. See games
Presidents Quiz app

complete app, 129
components, adding behaviors to

first question, displaying, 117
index variable, defining, 117
questions, iterating through, 118–121

components, designing, 114–116
images, switching for each question, 124
making quiz easy to modify, 122–124
user’s answers, checking, 126–129
variations on, 130

procedural abstraction, description of, 47
procedures, defining

adding parameters to, 296–298
building, 294
calling a procedure, 295
the program counter, 296
redundancy, eliminating, 293
returning values from a procedure, 299

location information, adding to the
response, 63

location, sending as part of the
response, 65

programming an autoresponse, 55
components, designing, 53–55
origin of, 51
variations on, 66

NXT Remote Control app
behaviors, adding to components

Bluetooth connection, making, 193
NXT robots, connecting to, 192
NXT robots, disconnecting from, 195
NXT robots, displaying the list of, 192
NXT robots, driving, 196–199
using UltrasonicSensor to detect

obstacles, 199
components, designing, 189–192
variations on, 201

O
objects, animating with timer events

creating movement, 252
overview, 251
speed, 253

OrientationSensor
heading and magnitude, moving any

direction with, 326
phones, using as a compass, 327
properties within, 324
Roll parameter, using, 325
as used in Ladybug Chase app, 72

P
packaging your app for downloading, 14
PaintPot app

button event handlers, adding, 30
components, adding behaviors to

dot size, changing, 32–35
drag event to draw a line, adding,

28–30
letting users take pictures, 31
touch event to draw a dot, adding,

25–28
components, designing

arrangements, using for better layouts,
22

arranging the buttons and camera
component, 23

canvas, adding, 22
color buttons, creating, 21

358  Index

S
scanning barcodes, 211
score-keeping, 45
scores, resetting, 47
screen components

in Hello Purr app, 5
in Paint Pot app, 20

screen title, 20
searching a database, 210
sensors

AccelerometerSensor
detecting acceleration using calibrated

values, 330–332
device shaking, responding to, 328
free fall, detecting, 329
readings from, using, 329

LocationSensor
boundaries, checking, 323
GPS, understanding, 320
location-aware apps, creating, 319
location information providers, GPS,

WiFi, and Cell ID, 324
location, sensing with App Inventor,

321–323
OrientationSensor

heading and magnitude, moving any
direction with, 326

roll parameter, using, 325
using the phone as a compass, 327

shaking the phone, 13, 328
sharing your app, 15
Sky Map, Google, 327
SMS-processing apps, xix. See also Broadcast

Hub app
software engineering principles

building prototypes and showing to users,
230

commenting your code, 232
debugging apps

activating and deactivating blocks, 239
incremental development with Do It,

239
testing individual blocks, 238
variables, watching, 237

design before coding, 231
design for real people with real problems,

230
divide, layer, and conquer, 232
incremental development, 231
understanding your language, 233–236

reusing blocks among apps, 301
understanding, 291

program counters, defined, 281, 296
programming languages, understanding,

233–236
project name, 20
properties of components, understanding,

220, 241, 242
prototypes

building for prospective users, 230
on App Inventor, overview of, xvi

Python programming, 215

Q
questions

asking with event handlers, 225
question and answer lists, 116–122, 151

quitting apps, 16

R
recording and playing back notes, 138–144
recursion, understanding, 141, 143
redundancy, eliminating, 293
refactoring, defined, 76, 134
remembering things with event handlers, 227
repeating blocks. See also blocks

controlling execution with, 281
using foreach, displaying a list with,

284–286
using foreach, repeating functions on a

list with
looping, the mechanics of, 283
maintainable code, writing, 284

while, using to repeat blocks
while, using to compute a formula, 288
while, using to synchronously process

two lists, 287
restart buttons, adding, 82
robotics. See NXT Remote Control app
Roll property of the OrientationSensor, 324,

325

Index  359 

U
Ultrasonic Sensor, using, 199
Unicode standards for text characters, 285
URLs

building a chart API URL dynamically,
338–341

defining the dataURLs list, 95
finding dataURLs for specific maps, 94
understanding the structure of, 337

user-initiated events, description of, 224
users, designing for, 230

V
values, returning from a procedure, 299
variables

changing the values of, 34
complex expressions, building, 246
defining, 243
displaying, 247
global score, 244
list variables

creating, 268
understanding, 267

setting and getting, 244
setting to expressions, 245
understanding, 227, 241
using, 33
watching variables, 237–239
withinBoundary variables, 264–266

vibration, adding, 11, 86
Viewer, description of, 4
visible components

understanding, 220
vs. non-visible components, 5

W
Watch mechanism, 237
web APIs (application programming

interfaces)
building a chart API URL dynamically,

338–341
creating App Inventor-compliant APIs

template code, customizing, 345
the Yahoo! Finance API, 347

description of, 227, 334
setting the Image.Picture property to a

chart API, 337
talking to

accessing the API through TinyWebDB,
343

Sound components
adding, 8, 11
Minimum Interval property, 15
in Xylophone app, 133–145

source code, sharing, 15
speaking apps, 61
sprites, origin and description of, 37, 251
static data vs. dynamic data, 148
static lists vs. dynamic lists, 273. See

also dynamic lists, creating
subprograms, 291. See also procedures,

defining

T
tags

processing multiple tags, in TinyWebDB.
GotValue, 315

requesting data with various tags, 314
TakeQuiz app. See MakeQuiz and TakeQuiz

app
teaching apps, creating in App Inventor, xvii
template code for APIs, customizing, 345
testing your app, 11, 104
TextBox component, 35
Texting component, 55, 172–177, 220
TextToSpeech component, 61
text-to-speech module, 53
timers. See Clock timers
TinyDB

component, 58
loading a BroadcastList from, 183
retrieving data from, 307
storing a BroadcastList in, 181
storing persistent data in, 306
storing remembered location in, 108

TinyWebDB
APIs

accessing, 343
understanding, 204–206

exploring the interface of, 342
GetValue-GotValue examples, 311, 312
loading data from the database, 160–162
multiple tags, processing, 315
requesting and processing data with, 310
storing and sharing data with, 308, 309
storing questions and answers in, 157–159
talking to web data APIs, 341

touch events
adding, 25–28
adding behaviors to, 48

traversing a list, 269
Twitter, 334

360  Index

exploring the web interface of an API,
342

web APIs that generate images,
335–337

web databases, setting up, 315
web-enabled apps

creating in App Inventor, overview of, xix,
227

web mashups, example of, 334
Whac-A-Mole game, 37
while blocks

using to compute formulas, 288
using to synchronously process two lists,

287
WiFi, and other location information

providers, 324
Wikitude, 320
withinBoundary variables, 264–266

X
xAccel argument, 329
x-y coordinate system, 250
Xylophone app

components, designing, 132
keyboard, creating

first note buttons, 133
remaining notes, implementing, 136
sound component, adding, 133
sounds, connecting to the buttons,

134–136
sounds, telling Android to load, 136

recording and playing back notes
components, adding, 139
notes and times, recording, 140
notes, playing back, 141–143
notes, playing back with proper delays,

143
variations, 145

Y
yAccel argument, 329
Yahoo! Finance API, 347
Yaw property of the OrientationSensor, 324,

327

Z
zAccel argument, 329

About the Authors
David Wolber is a professor of Computer Science at the University of San Francisco
and has taught App Inventor since the initial Google pilot program of 2009. The
apps created by his students—mostly humanities and business majors with
no programming experience—have been chronicled by the New York Times, San
Francisco Chronicle, Tech Crunch, Fortune.CNN.com, and Wired Magazine. Wolber is the
author of the advanced tutorials now appearing on the App Inventor site as well as
an O’Reilly Breakdown video series on App Inventor.

Harold (Hal) Abelson, a professor of Electrical Engineering and Computer Science at
MIT, has a long-standing interest in using computation as a conceptual framework
in teaching. He has played a key role in fostering the MIT institutional educational
technology initiative and is a founding director of Creative Commons and Public
Knowledge. Hal’s book, Turtle Geometry, written with Andrea diSessa in 1981, pre-
sented a computational approach to geometry that has been cited as “the first step
in a revolutionary change in the entire teaching/learning process.”

Ellen Spertus is an Associate Professor of Computer Science at Mills College—where
she has taught with App Inventor—and a Senior Research Scientist at Google, where
she was one of the App Inventor developers. She and her work have been written
about in Wired, USA Today (which described her as “a geek with principles”), and the
New York Times (as one of three “women who might change the face of the com-
puter industry”). In addition to her many technical publications, her writings have
appeared in the book She’s Such a Geek: Women Write about Science, Technology,
and Other Nerdy Stuff and in the magazines Technology Review, Chronicle of Higher
Education, Odyssey: Adventures in Science, and Glamour.

Liz Looney is a senior software engineer at Google, where she helped develop App
Inventor and is a member of the Robotics Task Force. She has over 20 years of experi-
ence in creating programming tools and holds a bachelor’s degree in Computer
Science from the University of New Hampshire.

Colophon
Dan Fauxsmith provided quality control for App Inventor. Jasmine Perez provided pro-
duction assistance. The book was composited in Adobe InDesign CS4 by Nancy Kotary.

The heading and text font is Myriad Pro, the code font is TheSansMonoCondensed,
and the cover font is Gravur Condensed.

	Contents
	Foreword
	Preface
	A Blocks Language for Mobile Phones
	What Can You Do with App Inventor?
	Why App Inventor Works
	What Kind of Apps Can You Build?
	Who Can Build Apps?
	Conventions Used in This Book
	How to Use This Book
	Acknowledgments

	Chapter 1. Hello Purr
	What You’ll Learn
	 The App Inventor Environment
	Designing the Components
	Adding Behaviors to the Components
	Packaging the App for Downloading
	Sharing the App
	Variations
	Summary

	Part I. 12 Customizable Apps
	Chapter 2. PaintPot
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	The Complete App: PaintPot
	Variations
	Summary

	Chapter 3. MoleMash
	What You’ll Build
	What You’ll Learn
	Getting Started
	Adding Behaviors to the Components
	The Complete App: MoleMash
	Variations
	Summary

	Chapter 4. No Texting While Driving
	What You’ll Learn
	Getting Started
	The Complete App: No Texting While Driving
	Variations
	Summary

	Chapter 5. Ladybug Chase
	What You’ll Build
	What You’ll Learn
	Designing the Components
	Getting Started
	Animating the Ladybug
	Displaying the Energy Level
	Adding an Aphid
	Adding a Restart Button
	Adding the Frog
	Adding Sound Effects
	Variations
	Summary

	Chapter 6. Paris Map Tour
	What You’ll Learn
	Designing the Components
	Setting the Properties of ActivityStarter
	Adding Behaviors to the Components
	Setting Up a Virtual Tour
	Variations
	Summary

	Chapter 7. Android, Where’s My Car?
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	The Complete App: Android, Where’s My Car?
	Variations
	Summary

	Chapter 8. Presidents Quiz
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	Making the Quiz Easy to Modify
	Switching the Image for Each Question
	Checking the User’s Answers
	The Complete App: The Presidents Quiz
	Variations
	Summary

	Chapter 9. Xylophone
	What You’ll Build
	What You’ll Learn
	Getting Started
	Designing the Components
	Creating the Keyboard
	Recording and Playing Back Notes
	Variations
	Summary

	Chapter 10. MakeQuiz and TakeQuiz
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	The Complete App: MakeQuiz
	TakeQuiz: An App for Taking the Quiz in the Database
	TakeQuiz: Modifying the Blocks to Load the Quiz from the Database
	The Complete App: TakeQuiz
	Variations
	Summary

	Chapter 11. Broadcast Hub
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	The Complete App: Broadcast Hub
	Variations
	Summary

	Chapter 12. NXT Remote Control
	What You’ll Learn
	Getting Started
	Designing the Components
	Adding Behaviors to the Components
	Variations
	Summary

	Chapter 13. Amazon at the Bookstore
	What You’ll Learn
	What Is an API?
	Designing the Components
	Designing the Behavior
	Customizing the API
	Variations
	Summary

	Part II. Inventor’s Manual
	Chapter 14. Understanding an App’s Architecture
	Components
	Behavior
	Summary

	Chapter 15. Engineering and Debugging an App
	Software Engineering Principles
	Debugging an App
	Summary

	Chapter 16. Programming Your App’s Memory
	Named Memory Slots
	Properties
	Defining Variables
	Setting and Getting a Variable
	Setting a Variable to an Expression
	Summary

	Chapter 17. Creating Animated Apps
	Adding a Canvas Component to Your App
	The Canvas Coordinate System
	Animating Objects with Timer Events
	High-Level Animation Functions
	Interactive Animation
	Specifying Sprite Animation Without a Clock Timer
	Summary

	Chapter 18. Programming Your App to Make Decisions: Conditional Blocks
	Testing Conditions with if and ifelse Blocks
	Programming an Either/Or Decision
	Programming Conditions Within Conditions
	Programming Complex Conditions
	Summary

	Chapter 19. Programming Lists of Data
	Creating a List Variable
	Selecting an Item in a List
	Using an Index to Traverse a List
	Creating Input Forms and Dynamic Lists
	Lists of Lists
	Summary

	Chapter 20. Repeating Blocks: Iteration
	Controlling an App’s Execution: Branching and Looping
	Repeating Functions on a List Using foreach
	A Second foreach Example: Displaying a List
	Repeating Blocks with while
	Summary

	Chapter 21. Defining Procedures: Reusing Blocks
	Eliminating Redundancy
	Defining a Procedure
	Calling a Procedure
	The Program Counter
	Adding Parameters to Your Procedure
	Returning Values from a Procedure
	Reusing Blocks Among Apps
	A Second Example: distanceBetweenPoints
	Summary

	Chapter 22. Working with Databases
	Storing Persistent Data in TinyDB
	Retrieving Data from TinyDB
	Storing and Sharing Data with TinyWebDB
	Storing Data with TinyWebDB
	Requesting and Processing Data with TinyWebDB
	GetValue-GotValue in Action
	Setting Up a Web Database
	Summary

	Chapter 23. Reading and Responding to Sensors
	Creating Location-Aware Apps
	Using the Orientation Sensor
	Using the Accelerometer
	Summary

	Chapter 24. Communicating with Web APIs
	Talking to Web APIs That Generate Images
	Talking to Web Data APIs
	Creating Your Own App Inventor–Compliant APIs
	Summary

	Index

