

The Mobile Combustion Analyzer from Kistler

KiBoxToGo-Präsentation hoe March 09

On-Board Combustion Analysis 50 KISTLER **System**

Objective:

- Combustion Analysis System specifically for on-board operation in vehicles
- Real time calculation of combustion analysis data
- Data analysis in FPGA and 'embedded PC'
- Interface for ECU application tool (ETAS-INCA)

USP's:

- Dedicated design for on-board operation
- Quick set-up and simple operation
- New time-/crankangle-based data acquisition for transient engine operation

On-Board Combustion Analysis 50 KISTLER System-Concept measure. analyze. innovate.

On-Board Combustion Analysis 50 KISTLER System

On-Board Combustion Analysis KiBox to Go – Housing KiBox to Go – Housing KiBox to Go – Housing

Analyzer, Type 2893

KiBoxToGo-Präsentation hoe March 09

SCP slots: **4** (2-Channel Amplifiers)

KISTLER

measure. analyze. innovate.

- SCP measuring channels: 8 (TEDS)
- Voltage channels: 8 (BNC)
- Crank angle inputs: 2
 - Active Probe (e.g. 60-2, TEDS)
 - Standard (CDWTRG)
- Current clamp inputs: 2 (BNC)
- Data communication:
 - 1000 baseT Ethernet
 - 100 baseT Ethernet
 - CAN 1 (Analog Output)
 - CAN 2 (Spare)
 - USB (Memory Stick)
- Digital In: 8 (D-Sub)
- Digital Out: 8 (D-Sub)

- SCP slots: 4
 - Amplifier types: 5064B1, 4665B1, 5271B1, 5273B1
 - Amplifier bandwidth: 100 kHz
- Measuring channels: 8
 - Sampling rate: 1.25 MS/s
 - ADC Resolution: 16-bit
 - Voltage input range: ±10 V
- Data acquisition:
 - Angle domain: 0.1/1.0 KW @
 0..15'625 rpm
 - Time domain: 312.5 kHz
- Digital I/O
 - Connector type: D-Sub
 - Opto coupler in: 8
 - Photo MOS relays out: 8

- Crank angle input 1
 - Connector: Binder, 14-pole
 - Interface standard: LVDS
 - Active Probe interface for engineintegrated crank angle encoders: CDM w/ embedded TRG, TEDS

KIS

measu

- Crank angle input 2
 - Connector: Binder, 12-pole
 - Interface standard: LVDS
 - Standard encoders: CDM/TRG, A/B quadrature signals, type 2614 encoders, etc.

Current clamp inputs: 2

- Connector: BNC
- Bandwidth: 100 kHz
- Sampling rate: 2.5 MS/s
- ADC Resolution: 12-Bit
- Evaluated output: 2-Bit
- Ethernet PC interface: 1000baseT
- Ethernet interface: 10/100baseT
- CAN Interfaces: 2
 - Connector: D-Sub, 9-pole
 - Baud rate: 1 MBit/s
 - Identifier: 11/29 Bit
 - Protocol: tbd.

RS-232C

- Connector: D-Sub, 9-pole
- Baud rate: 115 kBit/s max.
- Protocol: tbd.

Supply

- Supply voltage:
 - 10..32 VDC
 - 100..250 VAC w/ external adapter

KISTLER

measu

- Power dissipation:
 - 70 W typical
 - 120 W max.

Environmental

- Protection degree: IP40
- Ambient temperature:
 - Operating: -20..50 °C
 - No operating: -40..70 °C

Crank Angle Adapter

- Pick-up type: Hall/Magnetic
- Polarity: Positive/Negative
- Oscilloscope: ADC, 12-Bit
- Protection degree: IP65
- Ambient temperature: -40..85 ℃

Current Clamps (3rd Party)

- Type: Fluke 80i-110s
- Supply: Battery-powered
- Bandwidth: 100 kHz
- Protection degree: IP??
- Ambient temperature
 - Operating: 0..50 °C
 - No operating: -30..70 °C

KISTLER

measure. analyze. innovate.

Digital Signal Processing

- Robust real-time interpolation of the onboard crank angle encoders (toothed flywheels with Hall or magnetic pick-ups); allows transient operation
 - Coding: 60-1, 60-2, 36+1, ...
 - Resolution: 0.1/1.0 %W
 - Digital FIR decimation filter
 - Order: 82
 - Cutoff frequency: 100 kHz (-0.002 dB)

Real-time phase correction

- Group delay: Known for SCP amplifier, digital low-pass filter
- Accuracy: ±1.0 μs

KISTLER

measure. analyze. innovate.

Base Algos

- Revolutions: RPM
- Digital low-pass filtering per channel
 - Filter type: FIR
 - Cutoff frequency: 5/10/20/30/100 kHz
- Work: p_{miHD}, p_{miGE}
- Burn: B(α), SUM(B(α)),
 LOC10(α), LOC50(α),
 LOC90(α)
- Volume: $V(\alpha)$, $dV/d\alpha$
- Timing events: x(α)
- Timing events: x(t)
- Signal pegging: No/TD/p.../p. KiBox T o Go - Präsentation hore watch og const

Maximum: p_{max} , LOC(α) @ p_{max}

KIST

measure. analyze. innovate.

FR

- Maximum: $dp/d\alpha$
- Maximum: dp/dt
- TDC determination: Yes
- Cycle detection: Yes
- Variation coefficient: COV
- Gas exchange: MEAN($x(\alpha)$)
- Statistics: tbd.
- Monitoring: tbd.

On-Board Combustion Analysis Measure. analyze. innovate.

Noise: Kistler

Algos for Otto Engines

Knock: VDO, Kistler

On-Board Combustion Analysis Software

Views

- Configuration setup
 - System
 - Digitizer, algos
 - SCP amplifier
- Raw data x, real-time view
 - $x(\alpha)$ graph
 - x(V) graph
 - x(t) graph
- Cycle-based combustion data z
 - z(cycle) graph
- Offline: Configuration, graphs, analysis
- Table representation, numericals
- Oscilloscope function

KiBox to Go Innovation - CrankSmart

 time base dataacquisition for pressure an d crank-angle

- Interpolation for high CA resolution
- Transformation into CA domain
- cycle separation, scaling, zero-line algo
- calculation or combustion values
- display and storage

KiBox to Go Data format – Data export

Data storage in:

- Kistler .open Format, contains selectable CA-based data, timebased data and/ or combustion values
- Kistler .open Format is open and described, high-level access function are within a DLL available
- Data export in I-File and CSV format
- Concerto Plug-in available

KiBox to Go Capture – Trigger

Capture/ Trigger events for storage data :

- Manuel Trigger
- Trigger Event: Engine start/ Engine Stop
- Multiple Trigger events are possible
- Trigger on levels on combustion values e.g. Pmax> Level1
- Trigger on events in calibration software INCA

KiBox to Go Combustion analysis and ECU calibration System

measure. analyze. innovate.

INCA KiBox Cockpit

KiBox to Go Interface to INCA

Features:

- With INCA the KiBox is in remote modus
- Combustion values calculated by the KiBox, could be used in INCA like common ECU values
- Combustion values and ECU values are displayed and stored together on the same timeline in INCA
- INCA time-stamp is allocated by the KiBox
- Synchronization of individual Clocks is better then 10ms, better one engine-cycle

In vehicle indication use cases

In vehicle indication use cases

7

release maps [91]

Experiment Bearbeiten Ansicht Variablen Messung Hardware Datensatz Werkzeuge Fenster ?

InjCrv_stRlsOpRngThres2_MAP <kennfeld(< th=""><th colspan="2"><pre>X: InjSys_tEng [deg C] 77.7</pre></th><th colspan="2"><pre>y: InjSys_tAir [deg C] 25.0</pre></th><th colspan="2"></th></kennfeld(<>				<pre>X: InjSys_tEng [deg C] 77.7</pre>		<pre>y: InjSys_tAir [deg C] 25.0</pre>			
¥/×	20	25	55	65	70	75	80	85	
-20	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
-10	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
0	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
15	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
17	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
20	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
25	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
30	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
35	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
40	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
50	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
60	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
70	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMAP3	RLSMA	
,80	DI SMADS	DI SMADR	DISMADS	DI SMADS	DI SMADS	DI SMADR,	DI SMADS	DISMA	

Messfenster [1]	
speed	3047.79 [rpm]
imep_1	11.37 [bar]
imep_2	11.69 [bar]
imep_3	11.42 [bar]
imep_4	11.62 [bar]
heat_max_1	43.07 [J/°CA]
heat_max_2	52.43 [J/°CA]
heat_max_3	44.91 [J/°CA]
heat_max_4	45.43 [J/°CA]
heat_intstart_1	1.00 [°CA]
heat_int50_1	16.00 [°CA]
heat_intend_1	34.00 [°CA]

- U ×

KISTLER

measure. analyze. innovate.

_ 8 ×

KiBox To Go - Präsentation hoe March 09

KiBox to Go ECU Calibration

KiBox to Go ECU Calibration

Use cases for combustion analysis in ECU calibration:

- Combustion Analysis is the only possibility to get information about combustion as an result of the ECU control-functions
- Fast and efficient ECU calibration
 - optimization of idle, detection of misfiring
 - exhaust after treatment concepts need to switch between combustion concepts
 - nitrogen catalyst converter
 - catalyst heating
- cold-start, general engine start and stop
- Diagnose and troubleshooting
- evaluations under realistic environmental conditions, like altitude, temperature, humidity and fuel quality
- Injection-, ignition timing evaluation KiBox To Go - Präsentation hoe March 09

KiBox to Go Conclusion

First combustion analyzer dedicated to the in-vehicle use:

- compact housing, integrated amplifier, fast installation
- safe and robust operation with the in-vehicle CA Sensor e.g.
 60-2 Sensor with CrankSmart
- Interpolation instead of critical Extrapolation in transient conditions with CrankSmart
- reliable and entire measurement of engine-start/ stop, thanks combined time- and CA based data acquisition
- time-right/ time-synchrony interface to calibration software INCA

Thank You For Your Attention!