TEMA 14.- DISTRIBUCIONES BINOMIAL Y NORMAL

1.- DEFINICIÓN:

Consideremos un experimento aleatorio y sea *E* el espacio muestral asociado. Llamamos *variable aleatoria X* a toda aplicación que asocia a cada elemento del espacio muestral, *E*, un número real.

Ejemplo 1. Si lanzamos tres monedas al aire y X es el número de caras que salen, los valores que toma X son 0, 1, 2 y 3.

Ejemplo 2. Si de una camada de 6 cachorros se cuenta el nº de hembras que se "obtienen" la variable aleatoria toma los valores $x = 0, x = 1, \dots, x = 6$

Ejemplo 3. Al extraer una bombilla de una población y observar si es o no defectuosa, *X* tomaría los valores 1 y 0 según sea o no defectuosa.

En los ejemplos anteriores se habla de *variable aleatoria discreta* (toma valores discretos)

Ejemplo 4. Si se toma como X la estatura de los alumnos de un determinado curso puede tomar todos los valores (dentro de unos límites, es decir, dentro de un intervalo)

Ejemplo 5. Si se toma como variable la duración de las bombillas de una determinada marca puede tomar todos los valores de un intervalo.

En estos casos últimos se hablará de variable aleatoria continua.

1.1- PARÁMETROS:

a) Media: μ . También se llama esperanza.

$$\mu = \sum_{i=1}^{n} p_i x_i$$

b) Varianza: σ^2 .

$$\sigma^2 = \sum_{i=1}^n p_i (x_i - \mu)^2 = \sum_{i=1}^n p_i x_i^2 - \mu^2$$

c) Desviación típica: σ

$$\sigma = \sqrt{\sum_{i=1}^{n} p_i (x_i - \mu)^2} = \sqrt{\sum_{i=1}^{n} p_i x_i^2 - \mu^2}$$

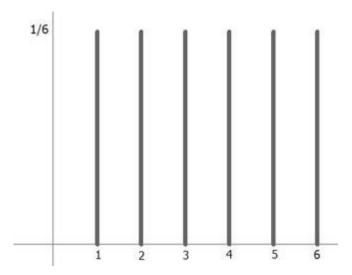
Estudiaremos dos modelos de variable aleatoria: uno discreto → la binomial otro continuo → la normal

2.- VARIABLE ALEATORIA DISCRETA.

Es aquella que sólo puede tomar determinados valores aislados. Por ejemplo: X = "suma de las caras superiores en el lanzamiento de dos dados"

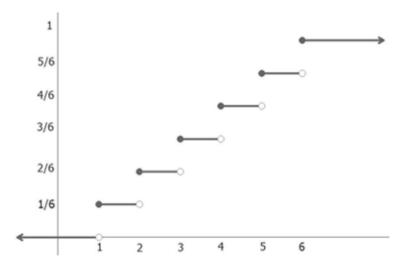
Se llama *función de probabilidad* de una v.a. discreta a la aplicación que asocia a cada valor x de la v.a. X su probabilidad p: $f(x_i) = P(X = x_i)$.

La representación de una distribución discreta de probabilidad es un diagrama de barras. En el caso del lanzamiento de un dado sería:



Se llama *función de distribución* de la v.a. discreta X a la función que asocia a cada valor de la v.a. la probabilidad acumulada hasta ese valor, es decir, $F(x_i) = P(X \le x_i)$.

La representación de una función de distribución es una gráfica escalonada:



3.- DISTRIBUCIÓN BINOMIAL.

Una variable aleatoria, X, sigue una distribución binomial o de Bernouilli , y lo escribimos $X \equiv B(n, p)$, cuando:

- La variable cuenta el número de veces que ocurre un suceso, A, al realizar el experimento aleatorio n veces.
- Depende de dos parámetros:
 n = nº de veces que se realiza el experimento.
 p = probabilidad de que ocurra el suceso A.
- El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente.
- La probabilidad del suceso A es constante, es decir, no varía de una prueba a otra.
- En cada prueba solo tengo dos posibles resultados: que ocurra *A* o que ocurra su complementario.

Cuando una variable sigue una distribución binomial se suele representar por: $X \rightarrow B(n, p)$

La función de probabilidad de la distribución binomial es:

$$f(x_i) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

donde:

n es el número de pruebas.

 \mathbf{k} es el número de éxitos.

p es la probabilidad de éxito.

p = 1 - p es la probabilidad de fracaso.

El número combinatorio

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

En una distribución binomial B(n, p) se tiene que:

Media: $\mu = np$

Varianza: $\sigma^2 = np(1 - p)$

Desviación típica: $\sigma = \sqrt{np(1-p)}$

4.- VARIABLE ALEATORIA CONTINUA.

Es aquella que puede tomar infinitos valores dentro de un intervalo de la recta real. Por ejemplo, la duración de las bombillas de una determinada marca y modelo.

La *función de densidad* de una v.a. continua es una función que cumple las siguientes condiciones:

- Sólo puede tomar valores comprendidos entre 0 y 1: $0 \le f(x) \le 1$
- > El área encerrada bajo la curva es igual a la unidad.

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

Como en el caso de la v.a. discreta, la *función de distribución* de una v.a. continua proporciona la probabilidad acumulada hasta un determinado valor de la variable, es decir, (Corresponde al área acumulada hasta ese valor de la variable)

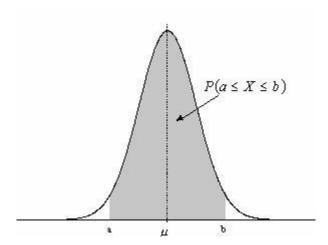
$$F(x) = P(X \le x) = \int_{-\infty}^{+\infty} f(x) dx$$

5.- DISTRIBUCIÓN NORMAL.

Una variable aleatoria continua, X, sigue una distribución normal de media μ y desviación típica σ , y se designa por $N(\mu, \sigma)$, si se cumplen las siguientes condiciones:

- Es una variable aleatoria continua.
- Depende de dos parámetros, μ y σ .
 - μ = media de la variable aleatoria.
 - σ = desviación típica de la variable aleatoria.
- Su función de densidad es simétrica respecto de la media.

La probabilidad equivale al área encerrada bajo la curva:

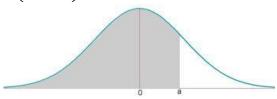


De entre todas ellas, la más utilizada es la *distribución normal* que corresponde a una distribución de media 0 y varianza 1, es decir, N(0,1) y se denota $Z \equiv N(0,1)$.

La *tabla* nos da las probabilidades de $P(Z \le k)$, siendo Z la variable tipificada.

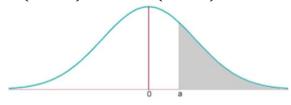
CÓMO SE CALCULAN LAS DISTINTAS PROBABILIDADES EN UNA N(0, 1)

 $P(Z \leq a)$



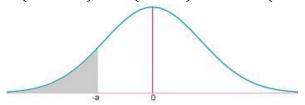
Ej:
$$P(Z \le 1.47) = 0.9292$$

$$P(Z > a) = 1 - P(Z \le a)$$



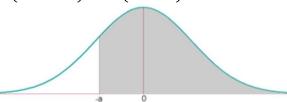
Ej:
$$P(Z > 1.47) = 1 - P(Z \le 1.47) = 1 - 0.9292 = 0.0708$$

$$P(Z \le -a) = P(Z > a) = 1 - P(Z \le a)$$



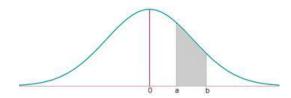
Ej:
$$P(Z \le -1.47) = 1 - P(Z \le 1.47) = 1 - 0.9292 = 0.0708$$

$$P(Z > -a) = P(Z \le a)$$



Ej:
$$p(Z > 1.47) = p(Z \le 1.47) = 0.9292$$

$$P(a \leq Z \leq b) = P(Z \leq b) - P(Z \leq a)$$



Ej:
$$P(0.45 \le Z \le 1.47) = P(Z \le 1.47) - P(Z \le 0.45) =$$

= $0.9292 - 0.6736 = 0.2556$

TIPIFICACIÓN DE UNA DISTRIBUCIÓN NORMAL.

Obviamente no existen tablas para todas las distribuciones normales $N(\mu, \sigma)$, por lo que habrá que transformarla en una N(0,1) para poder usar la tabla.

Al proceso de transformar una variable normal cualquiera $N(\mu, \sigma)$ en una N(0,1) se le llama *tipificación de la variable* .

El cambio de variable que hay que hacer es el siguiente:

$$X \in N(\mu, \sigma) \Rightarrow Z = \frac{X - \mu}{\sigma} \in N(0, 1)$$

<u>6 - APROXIMACIÓN DE LA BINOMIAL MEDIANTE LA NORMAL.</u>

Cuando n es grande y p está próximo a 0,5 el comportamiento de una distribución binomial B(n,p) es aproximadamente igual a una distribución normal, $N(np,\sqrt{np(1-p)})$

Esto permite sustituir el estudio de una B(n, p) por el de una $N(np, \sqrt{np(1-p)})$

Suele considerarse que la aproximación es buena cuando np > 5 y nq > 5