ODE 3: MAN ROBÓTICA MATERIAL DESCARGABLE

Verónica Camiña García Miguel Otero Bernárdez

ANEXOS

MATERIAL COMPLEMENTARIO PARA O DESENVOLVEMENTO DA ODE

PROXECTO: MAN ROBÓTICA

DESCRICIÓN DA ACTIVIDADE: Elaborar unha man robótica empregando o servomotor e o potenciómetro.

QUE TEÑO QUE TER? COMO O FAGO?

- ✓ Ten que ter dedos (5). O material máis sinxelo é o cartón ou cartolina.
- ✓ Os dedos deben ter articulacións (farémolo dobrando cada dedo en 3 partes)
- Para darlle mobilidade a man usaremos o servomotor e controlaremos a forza da mesma co potenciómetro.

AXUDA EXTRA

Imos crear unha man robótica.

Esta actividade ten dúas partes:

- a creativa de deseño, maqueta e realización da parte física da man
- a parte de programación.

Debedes dividir o traballo dentro do equipo para facelo de xeito efectivo e no tempo proposto.

DESEÑO

- Deseñar en papel a maqueta e anotar os materiais que precisades. A MAN TEN QUE TER 5 DEDOS (e cada dedo debe ter mobilidade). Seguramente precisaredes máis dunha maqueta da man para facer probas.
- 2. Facer unha lista do material do recuncho que precisades para que o encargado poida collelo.
- 3. Non vos esquezades de que na vosa maqueta ten que haber sitio para colocar os sensores, polo tanto, aínda que dividades o traballo dentro do equipo debedes estar en constante comunicación.
- **4.** Antes de facer a maqueta definitiva é necesario facer probas e colocar os sensores para facer axustes.
- 5. Unha vez finalizada a maqueta debedes probar a programación.
- 6. Cada equipo fará unha defensa oral onde amosará o súa man e explicará os pasos levados a cabo tanto na parte de deseño coma na programación, dificultades atopadas e solución as mesmas.

PROGRAMACIÓN

 Lembra que sempre que programamos debemos usar o bloque "por siempre". <u>SEMPRE QUE PROGRAMEMOS IMOS USAR</u> <u>ESTE BLOQUE</u> (a no ser que se indique o contrario)

IMPORTANTE: fíxate ben en que **porto** conectas os sensores non esquezades escoller ese **porto** no **bloque** senón a programación non funcionará.

 En primeiro lugar temos que colocar o servomotor na posición que queremos e para iso debemos usar o programa MBLOCK. O servomotor non se pode conectar directamente a placa. Temos que usar o sensor adaptador. Este sensor ten dúas partes brancas nun dos extremos. Chámanse *Bancos* e permítennos conectar dous

sensores que precisen adaptador ao mesmo tempo. Cando conectamos o servomotor debemos fixarnos en cal dos bancos o conectamos para poñelo no bloque de programación correspondente. O nome do banco esta ao lado do mesmo, tal coma indica a imaxe.

 Unha vez conectado o servomotor debemos axustar a aspa usando o MBLOCK, <u>non</u> <u>manualmente</u> pois a aspa é moi fráxil e pode romper con facilidade. O servomotor móvese nun eixo, polo tanto, debemos axustar a aspa ata a posición de inicio cos dedos estirados. Para iso iremos axustando a aspa programando os xiros ata a posición que queremos e esa será a posición de inicio. Inda que os ángulos veñen predeterminados, podemos escribir nos o número directamente, de feito, para axustar a aspa é moi posible que haxa que escribilo aos poucos (de 5 en 5, por

Cando xiremos o potenciómetro, o servo moverase encollendo os dedos, polo tanto, o ángulo de xiro ven definido polo bloque "**potenciómetro**". **Preséntasenos un problema matemático.** O potenciómetro móvese en

exemplo)

parámetros do 0 ao 1024 mentres que o servo xira de 0 a 180 °, polo tanto, para que o ángulo de xiro do servo veña definido polo potenciómetro debemos establecer unha relación entre un e outro. Para iso debemos primeiro saber <u>cal é</u> <u>o parámetro máximo do potenciómetro</u>. Usando o programa MBLOCK imos ao apartado apariencia e collemos o bloque "decir hola". "Hola" está nun rectángulo branco polo tanto pódese cambiar. Incrustaremos o bloque "potenciómetro" no lugar da palabra "hola". En eventos collemos o bloque "Al presionar". Coa placa base conectada ao ordenador e o potenciómetro conectado á placa base prememos no evento e o oso panda do programa diramos o parámetro máximo cando xiremos o potenciómetro.

Agora que xa sabemos o parámetro máximo debemos **dividir ese valor entre 180** que é o grado máximo de xiro do servomotor. Cando teñamos ese valor numérico xa podemos facer a programación.

 Collemos o bloque "fijar servo", e no ángulo debemos coller un operador matemático, pois o ángulo de xiro será o "potenciómetro" polo valor que nos deu a división anterior.

ODE 3: "Man robótica"

FÍXATE BEN: o bloque "potenciómetro" pode incluírse dentro doutro bloque, neste caso na parte do ángulo e dentro da operación matemática.

Unha vez remates coa programación tes que subila á placa base seguindo estes pasos:

• Terás que **"conectar"** o robot co ordenador mediante cable USB e transmitirlle a túa programación.

mBlock - Based On Scratch From the MIT Media Lab(v3.4.11) - Desconectar - No gua	rdado		
hivo Editar Conectar Placas Extensiones Lenguaje Ayuda			
📑 Untitled 🦯 📂 🗧	Programas Disfr	aces Sonidos	1
	Movimiento	Eventos	
57	Apariencia	Control	
	Sonido	Sensores	
	Lápiz	Operadores	
	Datos y Bloques	Robots	
	decir iHola! por 2	decir iHola! por 2 segundos	
	decir iHola!		. * .
	pensar <mark>Hmm</mark> po	or 🧿 segundos	
	pensar Hmm		
	-		
	mostrar		
	esconder		
	Contraction of the		

• Seleccionar o "puerto serie"

